SUBROUTINE CPROC (ND,BD,NM1,BM1,NM2,BM2,NA,AA,X,Y,M,A,B,C,D,W,YY) C C PROC APPLIES A SEQUENCE OF MATRIX OPERATIONS TO THE VECTOR X AND C STORES THE RESULT IN Y C AA ARRAY CONTAINING SCALAR MULTIPLIERS OF THE VECTOR X C ND,NM1,NM2 ARE THE LENGTHS OF THE ARRAYS BD,BM1,BM2 RESPECTIVELY C BD,BM1,BM2 ARE ARRAYS CONTAINING ROOTS OF CERTIAN B POLYNOMIALS C NA IS THE LENGTH OF THE ARRAY AA C X,Y THE MATRIX OPERATIONS ARE APPLIED TO X AND THE RESULT IS Y C A,B,C ARE ARRAYS WHICH CONTAIN THE TRIDIAGONAL MATRIX C M IS THE ORDER OF THE MATRIX C D,W ARE WORK ARRAYS C ISGN DETERMINES WHETHER OR NOT A CHANGE IN SIGN IS MADE C COMPLEX Y ,D ,W ,BD , 1 CRT ,DEN ,Y1 ,Y2 , 2 X ,A ,B ,C DIMENSION A(1) ,B(1) ,C(1) ,X(1) , 1 Y(1) ,D(1) ,W(1) ,BD(1) , 2 BM1(1) ,BM2(1) ,AA(1) ,YY(1) DO 101 J=1,M Y(J) = X(J) 101 CONTINUE MM = M-1 ID = ND M1 = NM1 M2 = NM2 IA = NA 102 IFLG = 0 IF (ID) 109,109,103 103 CRT = BD(ID) ID = ID-1 C C BEGIN SOLUTION TO SYSTEM C D(M) = A(M)/(B(M)-CRT) W(M) = Y(M)/(B(M)-CRT) DO 104 J=2,MM K = M-J DEN = B(K+1)-CRT-C(K+1)*D(K+2) D(K+1) = A(K+1)/DEN W(K+1) = (Y(K+1)-C(K+1)*W(K+2))/DEN 104 CONTINUE DEN = B(1)-CRT-C(1)*D(2) IF (CABS(DEN)) 105,106,105 105 Y(1) = (Y(1)-C(1)*W(2))/DEN GO TO 107 106 Y(1) = (1.,0.) 107 DO 108 J=2,M Y(J) = W(J)-D(J)*Y(J-1) 108 CONTINUE 109 IF (M1) 110,110,112 110 IF (M2) 121,121,111 111 RT = BM2(M2) M2 = M2-1 GO TO 117 112 IF (M2) 113,113,114 113 RT = BM1(M1) M1 = M1-1 GO TO 117 114 IF (ABS(BM1(M1))-ABS(BM2(M2))) 116,116,115 115 RT = BM1(M1) M1 = M1-1 GO TO 117 116 RT = BM2(M2) M2 = M2-1 117 Y1 = (B(1)-RT)*Y(1)+C(1)*Y(2) IF (MM-2) 120,118,118 C C MATRIX MULTIPLICATION C 118 DO 119 J=2,MM Y2 = A(J)*Y(J-1)+(B(J)-RT)*Y(J)+C(J)*Y(J+1) Y(J-1) = Y1 Y1 = Y2 119 CONTINUE 120 Y(M) = A(M)*Y(M-1)+(B(M)-RT)*Y(M) Y(M-1) = Y1 IFLG = 1 GO TO 102 121 IF (IA) 124,124,122 122 RT = AA(IA) IA = IA-1 IFLG = 1 C C SCALAR MULTIPLICATION C DO 123 J=1,M Y(J) = RT*Y(J) 123 CONTINUE 124 IF (IFLG) 125,125,102 125 RETURN END .