*** bandr.f.orig Tue Oct 3 14:04:34 1989 --- bandr.f Mon Jan 8 18:57:45 1990 *************** *** 98,104 **** if (g .eq. 0.0e0) go to 600 b1 = a(j1,1) / g b2 = b1 * d(j1) / d(j) ! s2 = 1.0e0 / (1.0e0 + b1 * b2) if (s2 .ge. 0.5e0 ) go to 450 b1 = g / a(j1,1) b2 = b1 * d(j) / d(j1) --- 98,109 ---- if (g .eq. 0.0e0) go to 600 b1 = a(j1,1) / g b2 = b1 * d(j1) / d(j) ! if (abs(b1) .gt. 1.0e0) then ! u = 1.0e0 / b1 ! s2 = u / (u + b2) ! else ! s2 = 1.0e0 / (1.0e0 + b1 * b2) ! endif if (s2 .ge. 0.5e0 ) go to 450 b1 = g / a(j1,1) b2 = b1 * d(j) / d(j1) *** comlr2.f.orig Mon Jan 8 18:31:33 1990 --- comlr2.f Mon Jan 8 18:49:49 1990 *************** *** 323,331 **** c .......... end backsubstitution .......... enm1 = n - 1 c .......... vectors of isolated roots .......... ! do 840 i = 1, enm1 if (i .ge. low .and. i .le. igh) go to 840 ! do 820 j = i+1, n zr(i,j) = hr(i,j) zi(i,j) = hi(i,j) 820 continue --- 323,331 ---- c .......... end backsubstitution .......... enm1 = n - 1 c .......... vectors of isolated roots .......... ! do 840 i = 1, n if (i .ge. low .and. i .le. igh) go to 840 ! do 820 j = i, n zr(i,j) = hr(i,j) zi(i,j) = hi(i,j) 820 continue *************** *** 333,340 **** 840 continue c .......... multiply by transformation matrix to give c vectors of original full matrix. ! c for j=n step -1 until low+1 do -- .......... ! do 880 j = n, low+1, -1 m = min0(j,igh) c do 880 i = low, igh --- 333,340 ---- 840 continue c .......... multiply by transformation matrix to give c vectors of original full matrix. ! c for j=n step -1 until low do -- .......... ! do 880 j = n, low, -1 m = min0(j,igh) c do 880 i = low, igh *** comqr2.f.orig Tue Oct 3 14:07:59 1989 --- comqr2.f Mon Jan 8 18:51:48 1990 *************** *** 396,404 **** c .......... end backsubstitution .......... enm1 = n - 1 c .......... vectors of isolated roots .......... ! do 840 i = 1, enm1 if (i .ge. low .and. i .le. igh) go to 840 ! do 820 j = i+1, n zr(i,j) = hr(i,j) zi(i,j) = hi(i,j) 820 continue --- 396,404 ---- c .......... end backsubstitution .......... enm1 = n - 1 c .......... vectors of isolated roots .......... ! do 840 i = 1, n if (i .ge. low .and. i .le. igh) go to 840 ! do 820 j = i, n zr(i,j) = hr(i,j) zi(i,j) = hi(i,j) 820 continue *************** *** 406,413 **** 840 continue c .......... multiply by transformation matrix to give c vectors of original full matrix. ! c for j=n step -1 until low+1 do -- .......... ! do 880 j = n, low+1, -1 m = min0(j,igh) c do 880 i = low, igh --- 406,413 ---- 840 continue c .......... multiply by transformation matrix to give c vectors of original full matrix. ! c for j=n step -1 until low do -- .......... ! do 880 j = n, low, -1 m = min0(j,igh) c do 880 i = low, igh *** hqr.f.orig Mon Jan 8 18:31:13 1990 --- hqr.f Mon Jan 8 18:34:06 1990 *************** *** 172,178 **** if (notlas) go to 225 c .......... row modification .......... c" ( prefer vector ! do 200 j = k, n foo = h(k,j) + q * h(k+1,j) h(k,j) = h(k,j) - foo * x h(k+1,j) = h(k+1,j) - foo * y --- 172,178 ---- if (notlas) go to 225 c .......... row modification .......... c" ( prefer vector ! do 200 j = k, en foo = h(k,j) + q * h(k+1,j) h(k,j) = h(k,j) - foo * x h(k+1,j) = h(k+1,j) - foo * y *************** *** 180,186 **** c j = min0(en,k+3) c .......... column modification .......... ! do 210 i = 1, j foo = x * h(i,k) + y * h(i,k+1) h(i,k) = h(i,k) - foo h(i,k+1) = h(i,k+1) - foo * q --- 180,186 ---- c j = min0(en,k+3) c .......... column modification .......... ! do 210 i = l, j foo = x * h(i,k) + y * h(i,k+1) h(i,k) = h(i,k) - foo h(i,k+1) = h(i,k+1) - foo * q *************** *** 189,195 **** 225 continue c .......... row modification .......... c" ( prefer vector ! do 230 j = k, n foo = h(k,j) + q * h(k+1,j) + r * h(k+2,j) h(k,j) = h(k,j) - foo * x h(k+1,j) = h(k+1,j) - foo * y --- 189,195 ---- 225 continue c .......... row modification .......... c" ( prefer vector ! do 230 j = k, en foo = h(k,j) + q * h(k+1,j) + r * h(k+2,j) h(k,j) = h(k,j) - foo * x h(k+1,j) = h(k+1,j) - foo * y *************** *** 198,204 **** c j = min0(en,k+3) c .......... column modification .......... ! do 240 i = 1, j foo = x * h(i,k) + y * h(i,k+1) + zz * h(i,k+2) h(i,k) = h(i,k) - foo h(i,k+1) = h(i,k+1) - foo * q --- 198,204 ---- c j = min0(en,k+3) c .......... column modification .......... ! do 240 i = l, j foo = x * h(i,k) + y * h(i,k+1) + zz * h(i,k+2) h(i,k) = h(i,k) - foo h(i,k+1) = h(i,k+1) - foo * q .