J.-P. Allouche M. Bousquet-Mélou 1994 Facteurs des suites de Rudin-Shapiro généralisées Bull. Belg. Math. Soc. 1 145–164 J.-P. Allouche N. Rampersad J. Shallit 2009 Periodicity, repetitions, and orbits of an automatic sequence Theoret. Comput. Sci. 410 2795–2803 10.1016/j.tcs.2009.02.006 J.-P. Allouche J. Shallit 2003 Automatic Sequences: Theory, Applications, Generalizations Cambridge University Press Y. Bugeaud D. Krieger J. Shallit 2011 Morphic and automatic words: maximal blocks and Diophantine approximation Acta Arithmetica 149 181–199 10.4064/aa149-2-7 E. Charlier N. Rampersad J. Shallit Enumeration and decidable properties of automatic sequences http://arxiv.org/abs/1102.3698 Preprint. To appear, Proc. DLT 2011 A. Cobham 1969 On the base-dependence of sets of numbers recognizable by finite automata Math. Systems Theory 3 186–192 10.1007/BF01746527 A. Cobham 1972 Uniform tag sequences Math. Systems Theory 6 164–192 10.1007/BF01706087 J. D. Currie N. Rampersad 2008 For each α> 2 there is an infinite binary word with critical exponent α Elect. J. Combinatorics 15 \#N34 http://www.combinatorics.org/Volume_15/Abstracts/v15i1n34.html D. Krieger 2007 On critical exponents in fixed points of non-erasing morphisms Theor. Comput. Sci. 376 70–88 10.1016/j.tcs.2007.01.020 D. Krieger 2008 Critical exponents and stabilizers of infinite words University of Waterloo D. Krieger 2009 On critical exponents in fixed points of k-uniform binary morphisms RAIRO Info. Theor. Appl. 43 41–68 10.1051/ita:2007042 D. Krieger J. Shallit 2007 Every real number greater than 1 is a critical exponent Theoret. Comput. Sci. 381 177–182 10.1016/j.tcs.2007.04.037 M. Kunze H. J. Shyr G. Thierrin 1981 h-bounded and semidiscrete languages Info. Control 51 147–187 10.1016/S0019-9958(81)90253-9 F. Mignosi G. Pirillo 1992 Repetitions in the Fibonacci infinite word RAIRO Info. Theor. Appl. 26 199–204 G. Paun A. Salomaa 1995 Thin and slender languages Discrete Appl. Math. 61 257–270 10.1016/0166-218X(94)00014-5 J. Shallit 1994 Numeration systems, linear recurrences, and regular sets Inform. Comput. 113 331–347 10.1006/inco.1994.1076