\documentclass[11pt]{amsart} \newtheorem{thm}{Theorem}[section] \newtheorem{cor}[thm]{Corollary} \newtheorem{lem}[thm]{Lemma} \newtheorem{note}[thm]{Note} \newtheorem{prop}[thm]{Proposition} \newtheorem{res}[thm]{Result} \newtheorem{rem}[thm]{Remark} \theoremstyle{definition} \newtheorem{eg}[thm]{Example} \newtheorem{defn}[thm]{Definition} \renewcommand{\theenumi}{\roman{enumi}} \renewcommand{\labelenumi}{(\theenumi)} \newcommand{\piccap}[1]{\stepcounter{figure} \smallskip Figure \thefigure #1} \newcommand{\cc}{\mathfrak c} \newcommand{\Z}{\mathbb Z} \newcommand{\N}{\mathbb N} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R} \begin{document} \setlength{\unitlength}{0.01in} \linethickness{0.01in} \begin{center} \begin{picture}(474,66)(0,0) \multiput(0,66)(1,0){40}{\line(0,-1){24}} \multiput(43,65)(1,-1){24}{\line(0,-1){40}} \multiput(1,39)(1,-1){40}{\line(1,0){24}} \multiput(70,2)(1,1){24}{\line(0,1){40}} \multiput(72,0)(1,1){24}{\line(1,0){40}} \multiput(97,66)(1,0){40}{\line(0,-1){40}} \put(143,66){\makebox(0,0)[tl]{\footnotesize Proceedings of the Ninth Prague Topological Symposium}} \put(143,50){\makebox(0,0)[tl]{\footnotesize Contributed papers from the symposium held in}} \put(143,34){\makebox(0,0)[tl]{\footnotesize Prague, Czech Republic, August 19--25, 2001}} \end{picture} \end{center} \vspace{0.25in} \setcounter{page}{135} \title{Sub-representation of posets} \author{M. K. Gormley} \thanks{The research of the first author was supported by a distinction award scholarship from the Department of Education for Northern Ireland} \author{T. B. M. McMaster} \address{Department of Pure Mathematics\\ Queen's University, Belfast\\ University Road\\ Belfast, BT7 1NN\\ United Kingdom} \email{m.k.gormley@qub.ac.uk} \email{t.b.m.mcmaster@qub.ac.uk} \thanks{M. K. Gormley and T. B. M. McMaster, {\em Sub-representation of posets}, Proceedings of the Ninth Prague Topological Symposium, (Prague, 2001), pp.~135--146, Topology Atlas, Toronto, 2002: {\tt arXiv:math.GN/0204128}} \begin{abstract} We define a property {\it sub-representability} and we give a complete characterisation of sub-representability of posets. \end{abstract} \keywords{Poset, sub-representable, flower, pinboard} \subjclass[2000]{06A06, 54B99} \maketitle \section{Introduction} \begin{defn} Given an ordered set $E$ and a topological space $X$, we say that $E$ can be {\it realised within $X$} [see \cite{realise1}] if there is an injection $j$ from $E$ into the class of (homeomorphism classes of) subspaces of $X$ such that, for $x,y$ in $E$, $x\leq y$ if and only if $j(x)$ is homeomorphically embeddable into $j(y)$. \end{defn} The question of which spaces have the `converse' of this property of {\it realisability} appears difficult in general, but we are able to handle the principal $T_0$ case. What we shall now do therefore is to try to represent the family of sub-posets of a partially ordered set $P$, ordered by embeddability, within that family ordered by inclusion. However, we additionally want the representation to be such that each sub-poset is represented by an embeddability-wise equivalent poset. That is, we wish to sub-represent the poset. \begin{defn} Whenever $P_1$ and $P_2$ are posets, we shall say that $P_1\hookrightarrow P_2$ if and only if $P_1$ is isomorphic to a subset of $P_2$. \end{defn} \begin{defn}\label{subrep} We shall say that $P$ is {\it sub-representable} if and only if there exists a map $g$ from ${\mathbb P}(P)$ to ${\mathbb P}(P)$ such that for all $P_1, P_2 \in {\mathbb P}(P)$: \begin{itemize} \item[(i)] $P_1\hookrightarrow P_2$ if and only if $g(P_1)\subseteq g(P_2)$, and \item[(ii)] $P_1\hookrightarrow g(P_1)\hookrightarrow P_1$. \end{itemize} \end{defn} \begin{eg} \addtocounter{figure}{1} Figure \thefigure \;details a sub-representation of a four-point poset. \addtocounter{figure}{-1} \begin{center} \begin{picture}(250,400)(0,0) \put(50,40){\circle*{10}} \put(0,80){\circle*{10}} \put(0,120){\circle*{10}} \put(10,110){\vector(1,2){45}} \put(0,85){\line(0,1){30}} \put(0,180){\circle*{10}} \put(0,185){\line(0,1){30}} \put(0,220){\circle*{10}} \put(0,225){\line(0,1){30}} \put(0,260){\circle*{10}} \put(90,100){\circle*{10}} \put(70,100){\circle*{10}} \put(80,200){\circle*{10}} \put(70,240){\circle*{10}} \put(80,205){\line(-1,4){7.6}} \put(80,205){\line(1,4){7.6}} \put(90,240){\circle*{10}} \put(50,300){\circle*{10}} \put(50,340){\circle*{10}} \put(30,380){\circle*{10}} \put(70,380){\circle*{10}} \put(50,305){\line(0,1){30}} \put(50,345){\line(1,2){16}} \put(50,345){\line(-1,2){16}} \put(40,50){\vector(-1,1){25}} \put(60,50){\vector(2,3){20}} \put(0,140){\vector(0,1){20}} \put(10,267){\vector(1,1){27}} \put(80,250){\vector(-1,2){20}} \put(80,120){\vector(0,1){60}} \put(220,40){\circle*{10}} \put(200,35){$3$} \put(170,80){\circle*{10}} \put(150,75){$2$} \put(170,120){\circle*{10}} \put(150,115){$3$} \put(180,110){\vector(1,2){45}} \put(170,85){\line(0,1){30}} \put(170,180){\circle*{10}} \put(150,175){$1$} \put(170,185){\line(0,1){30}} \put(170,220){\circle*{10}} \put(150,215){$2$} \put(170,225){\line(0,1){30}} \put(170,260){\circle*{10}} \put(150,255){$3$} \put(260,100){\circle*{10}} \put(275,95){$4$} \put(240,100){\circle*{10}} \put(220,95){$3$} \put(250,200){\circle*{10}} \put(265,195){$2$} \put(240,240){\circle*{10}} \put(220,235){$3$} \put(250,205){\line(-1,4){7.6}} \put(250,205){\line(1,4){7.6}} \put(260,240){\circle*{10}} \put(275,235){$4$} \put(220,300){\circle*{10}} \put(235,295){$1$} \put(220,340){\circle*{10}} \put(235,335){$2$} \put(200,380){\circle*{10}} \put(180,375){$3$} \put(240,380){\circle*{10}} \put(255,375){$4$} \put(220,305){\line(0,1){30}} \put(220,345){\line(1,2){16}} \put(220,345){\line(-1,2){16}} \put(210,50){\vector(-1,1){25}} \put(230,50){\vector(2,3){20}} \put(170,140){\vector(0,1){20}} \put(180,267){\vector(1,1){27}} \put(250,250){\vector(-1,2){20}} \put(250,120){\vector(0,1){60}} \put(10,15){\scriptsize Sub-posets ordered} \put(10,3){\scriptsize by embeddability.} \put(170,15){\scriptsize Representative sub-posets} \put(170,3){\scriptsize ordered by inclusion.} \end{picture}\\ \piccap{} \end{center} \end{eg} \begin{thm}\label{subnot} Suppose that $P_1\subseteq P$. If $P_1$ is not sub-representable, then $P$ is not sub-representable. \end{thm} \begin{proof} Suppose that $P$ was sub-representable and $g$ is as in Definition \ref{subrep}. Now $g(P_1)$ embeds into $P_1$ by a map $h$. Then it is clear that if $g^*=g_{|P_1}$, then $h\circ g^*$ will sub-represent $P_1$. \end{proof} \begin{defn} \addtocounter{figure}{1} The posets whose Hasse diagrams are given in Figure \thefigure \;shall be known as a {\it vee}, a {\it wedge}, and a {\it diamond}, respectively. \addtocounter{figure}{-1} \begin{center} \begin{picture}(200,100)(0,0) \put(30,0){\circle*{10}} \put(10,40){\circle*{10}} \put(50,40){\circle*{10}} \put(30,5){\line(-1,2){16}} \put(30,5){\line(1,2){16}} \put(80,0){\circle*{10}} \put(100,40){\circle*{10}} \put(120,0){\circle*{10}} \put(100,35){\line(-1,-2){16}} \put(100,35){\line(1,-2){16}} \put(170,0){\circle*{10}} \put(150,40){\circle*{10}} \put(190,40){\circle*{10}} \put(170,80){\circle*{10}} \put(170,5){\line(1,2){16}} \put(170,75){\line(-1,-2){16}} \put(170,75){\line(1,-2){16}} \put(170,5){\line(-1,2){16}} \end{picture}\\ \piccap{} \end{center} \end{defn} \begin{eg} \mbox{} \begin{itemize} \item All two-point posets are (trivially) sub-representable. \item All three-point posets are (trivially) sub-representable. \item Not all four-point posets are sub-representable: see Example \ref{counter}. \end{itemize} \end{eg} \begin{eg}\label{counter} \addtocounter{figure}{1} The poset $P$ in Figure \thefigure \;is not sub-representable for the following reasons. Suppose that $P$ were sub-representable. Since $P$ contains a wedge, the wedge must be sub-represented by either $\{1,3,4\}$ or $\{2,3,4\}$. A two-point chain must then be mapped to $\{1,3\}$, $\{3,4\}$ or $\{2,3\}$; not to $\{1,2\}$. However, in all three cases we see that there is no other point incomparable with the chain, and hence the disjoint union $\{1,2,4\}$ of a two-point chain and a single point cannot be sub-represented: a contradiction. \addtocounter{figure}{-1} \begin{center} \begin{picture}(100,100)(0,0) \put(20,10){\circle*{10}} \put(5,5){$1$} \put(20,50){\circle*{10}} \put(5,45){$2$} \put(20,90){\circle*{10}} \put(5,85){$3$} \put(55,50){\circle*{10}} \put(65,45){$4$} \put(20,15){\line(0,1){30}} \put(20,55){\line(0,1){30}} \put(25,90){\line(2,-3){30}} \end{picture}\\ \piccap{} \end{center} \addtocounter{figure}{1} Figure \thefigure \;gives all four-point posets that cannot be sub-represented, as may be verified by simple arguments like that of above. \addtocounter{figure}{-1} \begin{center} \begin{picture}(300,150)(0,0) \put(10,10){\circle*{5}} \put(10,12.5){\line(1,1){18}} \put(30,30){\circle*{5}} \put(50,10){\circle*{5}} \put(50,12.5){\line(-1,1){18}} \put(60,10){\circle*{5}} \put(130,10){\circle*{5}} \put(130,12.5){\line(-1,1){18}} \put(130,12.5){\line(1,1){18}} \put(110,30){\circle*{5}} \put(150,30){\circle*{5}} \put(160,10){\circle*{5}} \put(210,10){\circle*{5}} \put(210,12.5){\line(0,1){15}} \put(230,12.5){\line(0,1){15}} \put(230,10){\circle*{5}} \put(210,30){\circle*{5}} \put(210,12.5){\line(1,1){18}} \put(230,30){\circle*{5}} \put(230,12.5){\line(-1,1){18}} \put(10,80){\circle*{5}} \put(10,82.5){\line(0,1){15}} \put(10,100){\circle*{5}} \put(10,102.5){\line(0,1){15}} \put(10,120){\circle*{5}} \put(12.5,120){\line(1,-1){18}} \put(30,100){\circle*{5}} \put(70,80){\circle*{5}} \put(70,82.5){\line(0,1){15}} \put(70,100){\circle*{5}} \put(70,102.5){\line(0,1){15}} \put(70,120){\circle*{5}} \put(70,82.5){\line(1,1){18}} \put(90,100){\circle*{5}} \put(160,80){\circle*{5}} \put(160,82.5){\line(1,1){18}} \put(160,82.5){\line(-1,1){18}} \put(140,100){\circle*{5}} \put(142.5,100){\line(1,1){18}} \put(180,100){\circle*{5}} \put(177.5,100){\line(-1,1){18}} \put(160,120){\circle*{5}} \put(220,80){\circle*{5}} \put(220,82.5){\line(1,1){18}} \put(240,100){\circle*{5}} \put(242.5,100){\line(1,-1){20}} \put(260,80){\circle*{5}} \put(260,82.5){\line(1,1){18}} \put(280,100){\circle*{5}} \end{picture}\\ \piccap{} \end{center} \addtocounter{figure}{1} Figure \thefigure \;gives all four-point posets (likewise identified) that can be sub-represented. \addtocounter{figure}{-1} \begin{center} \begin{picture}(250,150)(0,0) \put(15,30){\circle*{5}} \put(25,30){\circle*{5}} \put(35,30){\circle*{5}} \put(45,30){\circle*{5}} \put(80,10){\circle*{5}} \put(80,12.5){\line(0,1){15}} \put(80,30){\circle*{5}} \put(80,32.5){\line(0,1){15}} \put(80,50){\circle*{5}} \put(80,30){\line(1,1){15}} \put(95,45){\circle*{5}} \put(135,10){\circle*{5}} \put(135,12.5){\line(0,1){15}} \put(135,30){\circle*{5}} \put(135,32.5){\line(0,1){15}} \put(135,50){\circle*{5}} \put(135,30){\line(1,-1){15}} \put(150,15){\circle*{5}} \put(210,30){\circle*{5}} \put(210,30){\line(0,1){15}} \put(210,30){\line(1,1){15}} \put(210,30){\line(-1,1){15}} \put(195,45){\circle*{5}} \put(225,45){\circle*{5}} \put(210,45){\circle*{5}} \put(30,100){\circle*{5}} \put(30,100){\line(0,-1){15}} \put(30,85){\circle*{5}} \put(30,100){\line(1,-1){15}} \put(45,85){\circle*{5}} \put(30,100){\line(-1,-1){15}} \put(15,85){\circle*{5}} \put(100,100){\circle*{5}} \put(100,100){\line(0,-1){15}} \put(100,85){\circle*{5}} \put(110,85){\circle*{5}} \put(120,85){\circle*{5}} \put(170,85){\circle*{5}} \put(170,85){\line(0,1){15}} \put(170,100){\circle*{5}} \put(170,100){\line(0,1){15}} \put(170,115){\circle*{5}} \put(170,115){\line(0,1){15}} \put(170,130){\circle*{5}} \put(220,90){\circle*{5}} \put(220,90){\line(0,1){15}} \put(220,105){\circle*{5}} \put(220,105){\line(0,1){15}} \put(220,120){\circle*{5}} \put(230,105){\circle*{5}} \end{picture}\\ \piccap{} \end{center} \end{eg} Example \ref{counter} shows that we do not have universal sub-represent\-ability, even among finite posets. We seek to identify which posets are sub-represent\-able. \begin{note} Let $x\in P$. We shall use the following notation (note the strictness of the inequalities): \begin{itemize} \item $U(x)=\{y\in P:y>x\}$ \item $D(x)=\{y\in P:y1$) and $D(x)\cup U(x) \cup \{x\} = P$ \item {\it co-flower} if and only if there exists $x\in P$ such that $U(x)$ is a well-ordered chain, $D(x)$ is an antichain (with $|D(x)|>1$) and $D(x)\cup U(x) \cup \{x\}= P$. \end{itemize} \end{defn} \begin{note} Note that the dual of a flower is a co-flower and vice versa. Also every flower contains a vee and every co-flower contains a wedge. \end{note} \begin{thm}\label{vandw} Suppose that $P$ contains both a vee and a wedge. Then $P$ is not sub-representable. \end{thm} \begin{proof} Suppose that $P$ is sub-representable but contains both a vee and a wedge. Suppose that a vee, $\{1,2,3:1<2,1<3\}$, is represented by $\{a,b,c:bx_{k+3}>...>x_{k+n-1}$ as in Figure \thefigure. Our isomorphism is defined as follows: map a singleton to $x_1$; map each chain of size $m>1$ to $\{x_1,x_{k+1},...,x_{k+m-1}\}$; map each antichain of size $r>1$ to $\{x_1,...,x_r\}$; map each flower of height $m$ and width $r$ to $\{x_j:k0$. Suppose that $p'$ is the least point of $\theta([\N])\cap\theta([-\N])$, that is, $p'=(-q)',$ which implies that $|\theta([\N])\cap \theta([-\N])|\leq q+1$. Then $\theta([\{0,1,2,3...,q,q+1\}])$ must be a subset of $\theta([\N])$ and also a subset of $\theta([-\N])$. This is a contradiction, since $|\theta([\N])\cap \theta([-\N])|\leq q+1$. \end{proof} \begin{cor} By Corollary \ref{subnot} we then have that $\Q, \R$ and $\R\setminus \Q$ (as ordered sets) cannot be sub-represented. \end{cor} \begin{cor} If $P$ contains a copy of $\N$ and a copy of $-\N$ then it cannot be sub-represented. \end{cor} \begin{note} If $P$ is a chain which is not well-ordered then it contains a copy of $-\N$, and if $P$ is a chain which is not well-ordered* then it contains a copy of $\N$. \end{note} \begin{cor} If $P$ is a chain which is not well-ordered and not well-ordered* then it cannot be sub-represented. \end{cor} \begin{thm} Every well-ordered set can be sub-represented. \end{thm} \begin{proof} Let $P$ be a well-ordered chain of order-type $\alpha$. It suffices to show that $\alpha$ itself is sub-representable. Let $S\subseteq \alpha$ and suppose that $S$ is order-isomorphic to $\beta<\alpha$. We map $[S]$ to $\beta$ where $\beta$ is a proper initial segment of $\alpha$. On the other hand, if $S$ is order-isomorphic to $\alpha$, map $[S]$ to $\alpha$ itself. \end{proof} \begin{thm}\label{repwell*} Every well-ordered* set can be sub-represented. \end{thm} \begin{proof} Let $P$ be a well-ordered* chain. Let $P^*$ denote the dual of $P$. Then $P^*$ is, without loss of generality, an ordinal $\alpha$. If $S\subseteq P$ then $S^*$ is order-isomorphic to some $\beta\leq\alpha$, and so map $[S]$ to the final segment of $\alpha^*$ of order-type $\beta^*$. \end{proof} \begin{thm} Let $P$ be a flower or a co-flower. Then $P$ is sub-represent\-able. \end{thm} \begin{proof} Suppose that $P$ is a flower. Then $P= D(x)\cup U(x) \cup \{x\}$. Suppose that $|U(x)|=\delta$. Label the points of $U(x)$ as $\{x_\beta:\beta<\delta\}$. By definition, $D(x)\cup \{x\} \cup \{x_0\}$ is a well-ordered* chain. Label the points of $U(x)\setminus \{x_0\}$ as $\{x'_\beta:\beta<\delta'\}$. Let $S\subseteq P$. If $S$ is a copy of $\alpha^*$ for some ordinal $\alpha$, map $S$ to the final segment $\alpha^*$ of $D(x)\cup \{x\} \cup \{x_0\}$. Otherwise $S$ contains a copy of $\alpha^*$ for some ordinal $\alpha$ (such that it does not contain a copy of $\gamma^*$ for some $\gamma>\alpha$) together with an antichain of cardinality $\zeta$. Map $S$ to $\{x'_\beta:\beta<\zeta\}$ together with the final segment $\alpha^*$ of $D(x)\cup \{x\} \cup \{x_0\}$. We have now sub-represented $P$. The case where $P$ is a co-flower is similar. \end{proof} \begin{thm}\label{finord} Let $P$ be the disjoint union of finitely many well-ordered sets. Then $P$ is sub-representable. \end{thm} \begin{proof} Suppose that $P= \bigcup_{k\leq n} \bigcup_{s\leq m_k} \{^s\omega^k\}$ where $^s\omega^k$ is a copy of an ordinal $\omega^k$. Then (up to order-isomorphism) $P$ is a copy of $n^*=\sum_k m_k$ many ordinals. So let us consider $P$ as $\bigcup_{n\leq n^*}\{\omega^n\}$ where $\omega^n\geq \omega^{n+1}$ for all $n\leq n^*$. Let $Y\subseteq P$ meet each of $\omega^{n_1},\omega^{n_2},...,\omega^{n_t}$ where $|Y\cap \omega^{n_p}|\geq |Y\cap \omega^{n_{p+1}}|$ for all $1\leq p\leq t-1$. Now $Y\cap \omega^{n_p}$ is a copy of an ordinal $\alpha_p$. So map $Y\cap \omega^{n_p}$ to $\alpha_p\in \omega^p$ and hence $P$ has been sub-represented. \end{proof} \begin{cor} A similar proof gives the result that a disjoint union of finitely many well-ordered* sets is sub-representable. \end{cor} Let us examine further the question of which disjoint unions of ordinals can be sub-represented. Let $P$ be a disjoint union of ordinals. If $P$ contains a copy of the disjoint union of the family of ordinals $\{1,2,3,4,...\}$ then by Example \ref{subord} and Corollary \ref{subnot}, $P$ cannot be sub-represented. Hence $P$ must contain copies of only finitely many distinct ordinals and only finitely many copies of each relevant infinite ordinal. If we have only finitely many copies of each ordinal then by Theorem \ref{finord}, $P$ is sub-representable. So all that remains to consider is the case where there are infinitely many copies of one or more finite ordinals. It will be seen --- although the demonstration requires considerably more effort than earlier proofs in this paper --- that this case also is sub-representable. \section{Sub-representation of pinboards} \begin{defn} A {\it pinboard} is a finite set of ordered pairs $$\{(h_i,f_i): 1\leq i\leq k\}$$ in which, for each value of $i$, $h_i$ (the height) is an ordinal, $f_i$ (the frequency) is a cardinal, and not both $h_i,f_i$ can be infinite. We recall that a cardinal is merely an initial ordinal (or equivalently, the least one of a given cardinality). \end{defn} \begin{defn} A {\it simple pinboard} is a pinboard of the form $$\{(\beta,n),(m,\gamma)\}$$ where $\beta$ and $\gamma$ are infinite cardinals, and $m$ and $n$ are finite cardinals. \end{defn} \begin{defn} \addtocounter{figure}{1} The {\it poset of a pinboard} $\{(h_i,f_i): 1\leq i\leq k\}$ is the disjoint union of $f_i$-many copies of $h_i$ for $1\leq i\leq k$. For example, if the pinboard was $\{(\omega_2,5),(\omega_1,2),(6,\omega),(3,1)\}$, then the poset is as suggested by Figure \thefigure. \addtocounter{figure}{-1} \end{defn} \begin{center} \begin{picture}(300,200)(0,0) \put(7,175){$\omega_2$} \put(7,115){$\omega_1$} \put(10,75){$6$} \put(10,26){$3$} \put(20,20){\line(1,0){240}} \put(20,20){\line(0,1){160}} \put(40,20){\line(0,1){160}} \put(60,20){\line(0,1){160}} \put(80,20){\line(0,1){160}} \put(100,20){\line(0,1){160}} \put(120,20){\line(0,1){100}} \put(140,20){\line(0,1){100}} \put(160,20){\line(0,1){60}} \put(180,20){\line(0,1){60}} \put(260,20){\line(0,1){10}} \put(18,10){$0$} \put(38,10){$1$}\put(58,10){$2$}\put(78,10){$3$} \put(98,10){$4$}\put(118,10){$5$}\put(138,10){$6$} \put(158,10){$7$}\put(178,10){$8$} \put(258,10){$\omega_0$} \put(190,10){.}\put(200,10){.}\put(210,10){.}\put(220,10){.} \put(230,10){.} \put(240,10){.}\put(250,10){.} \end{picture}\\ \piccap{} \end{center} Our aim is to sub-represent the poset of an arbitrary pinboard. However, it is easy to see that the poset of any pinboard is a subset of the poset of a simple pinboard. Hence, by Theorem \ref{subnot}, if every simple pinboard's poset is sub-representable, then every pinboard's poset is sub-representable. Let $P$ be the poset of a simple pinboard $\{(\beta,n),(m,\gamma)\}$. We shall represent $P$ by the set $$X=\{(\beta,i,\alpha):\alpha<\beta, i\beta_2>...>m$. We note that the ordinal sum $$n_1 \oplus n_2 \oplus \cdots \oplus n_k \oplus \gamma_m \oplus \cdots \oplus \gamma_1 \leq n \oplus(\oplus_m \gamma) = \oplus_m \gamma$$ and hence we can find a `remainder' ordinal $\gamma_0$ such that $$n_1 \oplus n_2 \oplus \cdots \oplus n_k \oplus \gamma_m \oplus \cdots \oplus \gamma_1 \oplus \gamma_0 = \oplus_m \gamma.$$ We now apply our injection $\lambda$ and hence associate a copy of $\beta_1$ with the first $n_1$-many columns of $X$, a copy of $\beta_2$ with the next $n_2$-many columns and so on. Our subset $\theta(Y)$ of $X$ associated with $Y$ is now formed by taking the desired initial segments of the associated columns, and it is clear that $\theta(Y)$ is an isomorphic copy of $Y$. \begin{thm} Let $Y,Y'$ be subsets of $X$. Then $Y\hookrightarrow Y'$ if and only if $\theta(Y)\subseteq \theta(Y')$. \end{thm} \begin{proof} Suppose that $Y\hookrightarrow Y'$. Let us denote $Y'$ as $$\{\beta_1',n_1'),(\beta_2',n_2'),\ldots,(\beta_l',n_l'),(m,\gamma_m'), (m-1,\gamma_{m-1}'),\ldots,(1,\gamma_1')\},$$ where $\beta_1'>\beta_2'>\cdots>\beta_l'>m$. Let $\theta(Y')$ be generated as above. We proceed to show that $\theta(Y)\subseteq \theta(Y')$. Consider the ordinals (without repetitions) comprising $Y$ and $Y'$, and denote this set arranged in decreasing order as $$\{\zeta_1,\zeta_2,\ldots,\zeta_q,m,m-1,\ldots,1\}.$$ It is clear that a single column of $Y$ must embed into a single column of $Y'$ and hence the ordinal $\zeta_1$ is in fact $\beta_1'$. We can now assume that $Y$ and $Y'$ are of the following form where some of the frequencies may be zero: $$Y = \{\zeta_1,r_1),(\zeta_2,r_2),\ldots,(\zeta_q,r_q),(m,\gamma_m), (m-1,\gamma_{m-1}),\ldots,(1,\gamma_1)\},$$ $$Y' = \{\zeta_1,r_1'),(\zeta_2,r_2'),\ldots,(\zeta_q,r_q'),(m,\gamma_m'), (m-1,\gamma_{m-1}'),\ldots,(1,\gamma_1')\}.$$ The proof now proceeds as follows: \noindent Stage 1: Any column of $Y$ of height $\zeta_1$ must embed into a column of $Y'$ of that height, and so it follows that $r_1\leq r_1'$. That is to say, the columns of $\theta(Y)$ of height $\zeta_1$ are contained in $\theta(Y')$. \noindent Stage 2: Any column of height $\zeta_1$ or $\zeta_2$ must embed into a column of $Y'$ of height $\zeta_1$ or $\zeta_2$, and hence $r_1+r_2\leq r_1'+r_2'$. It follows that the columns of $Y$ of height $\zeta_2$ are contained in $\theta(Y')$. \noindent The obvious iteration process will now yield, in a finite number of stages, $\theta(Y)\subseteq\theta(Y')$. \end{proof} \begin{eg} Suppose that $P$ is the poset of the simple pinboard {$\{$}{$(\aleph_2,12)$}, {$(7,\aleph_3)$}{$\}$} and we have a labelling map $\lambda:\oplus_7 \aleph_3 \rightarrow F$ where $F=\{(\aleph_2,i):i<12\}\cup\{(7,\alpha):\alpha<\aleph_3\}$, such that $\{\lambda(0),..,\lambda(11)\}$ are the base points of the infinite columns. Let $Y$ be a subset of $P$ whose columns have the following ordinalities: $\{\omega_1\oplus1, \omega_1, \omega_0\oplus5, \omega_0\oplus 5, \omega_0, 30, 30, 20\}$ together with $\aleph_0$ copies of $5$ and $\aleph_0$ copies of $3$. As before, we can disregard the $\aleph_0$ copies of $3$ since these do not affect the embeddability class of $Y$. The remaining frequencies (in decreasing order of corresponding height) are as follows: $\{1,1,2,1,2,1,\aleph_0\}$. We then have that $\theta(Y)$ consists of the following initial segments: $$\theta(Y) = \begin{cases} \omega_1\oplus1 & {\rm of \;column\;} \lambda(0),\\ \omega_1 & {\rm of \;column\;} \lambda(1),\\ \omega_0\oplus5 & {\rm of \;columns\;} \lambda(2) {\rm \;and\;} \lambda(3),\\ \omega_0 & {\rm of \;column\;} \lambda(4),\\ 30 & {\rm of \;columns\;} \lambda(5) {\rm \;and\;} \lambda(6),\\ 20 & {\rm of \;column\;} \lambda(7),\\ 5 & {\rm of \;columns\;} \lambda(8\oplus t) {\rm \;for\; all\;} t<\aleph_0,\\ 0 & {\rm otherwise.} \end{cases}$$ Let $Y'$ be another subset of $P$ whose columns have the following ordinalities: $\{\omega_2, \omega_2, {\omega_1\oplus10}, \omega_1, \omega_0, 60, 40, 30, 20\}$ together with $\aleph_1$ copies of $6$. We note that $Y\hookrightarrow Y'$. The frequencies (in decreasing order of corresponding height) are as follows: $\{2,1,1,1,1,1,1,1,\aleph_1\}$. We then have that $\theta(Y')$ consists of the following initial segments: $$\theta(Y') = \begin{cases} \omega_2 & {\rm of \;columns\;} \lambda(0) {\rm \;and\;} \lambda(1),\\ \omega_1\oplus10 & {\rm of \;column\;} \lambda(2),\\ \omega_1 & {\rm of \;column\;} \lambda(3),\\ \omega_0 & {\rm of \;column\;} \lambda(4),\\ 60 & {\rm of \;column\;} \lambda(5),\\ 40 & {\rm of \;column\;} \lambda(6),\\ 30 & {\rm of \;column\;} \lambda(7),\\ 20 & {\rm of \;column\;} \lambda(8),\\ 6 & {\rm of \;columns\;} \lambda(9\oplus t) {\rm \;for\; all\;} t<\aleph_1,\\ 0 & {\rm otherwise,} \end{cases}$$ and we observe that $\theta(Y)\subseteq \theta(Y')$. \end{eg} \begin{defn} A {\it co-pinboard} is a finite set of ordered pairs $\{(h_i,f_i): 1\leq i\leq k\}$ such that $\{(h_i^*,f_i): 1\leq i\leq k\}$ is a pinboard. \end{defn} \begin{res} Let $P$ be a poset. Then $P$ is sub-representable if and only if $P$ is either: \begin{itemize} \item[(i)] a flower, or \item[(ii)] a co-flower, or \item[(iii)] the poset of a pinboard, or \item[(iv)] the poset of a co-pinboard. \end{itemize} \end{res} \begin{note} We could similarly define sub-representation of an arbitrary topological space as follows: Let $(X,\mathcal{T})$ be a topological space. We shall say that $(X, \mathcal{T})$ is {\it sub-representable} if and only if there exists a map $g$ from ${\mathbb P}(X)$ to ${\mathbb P}(X)$ such that for all $Y$, $Z \in {\mathbb P}(X)$: \begin{itemize} \item[(i)] $(Y,\mathcal{T}_{|Y}) \hookrightarrow (Z,\mathcal{T}_{|Z})$ if and only if $g(Y)\subseteq g(Z)$, and \item[(ii)] $(Y,\mathcal{T}_{|Y})\hookrightarrow (g(Y),\mathcal{T}_{|{g(Y)}}) \hookrightarrow (Y,\mathcal{T}_{|Y})$. \end{itemize} \end{note} It then follows that we have already characterised all principal $T_0$ spaces which are sub-representable. The question of which other topological spaces are sub-representable remains open. %\bibliographystyle{amsplain} %\bibliography{13} \providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace} \providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR } % \MRhref is called by the amsart/book/proc definition of \MR. \providecommand{\MRhref}[2]{% \href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2} } \providecommand{\href}[2]{#2} \begin{thebibliography}{1} \bibitem{realise1} A.~E. McCluskey and T.~B.~M. McMaster, \emph{Realizing quasiordered sets by subspaces of ``continuum-like'' spaces}, Order \textbf{15} (1998/99), no.~2, 143--149. \MR{2001i:54042} \end{thebibliography} \end{document} .