\documentclass[11pt]{amsart} \begin{document} \setlength{\unitlength}{0.01in} \linethickness{0.01in} \begin{center} \begin{picture}(474,66)(0,0) \multiput(0,66)(1,0){40}{\line(0,-1){24}} \multiput(43,65)(1,-1){24}{\line(0,-1){40}} \multiput(1,39)(1,-1){40}{\line(1,0){24}} \multiput(70,2)(1,1){24}{\line(0,1){40}} \multiput(72,0)(1,1){24}{\line(1,0){40}} \multiput(97,66)(1,0){40}{\line(0,-1){40}} \put(143,66){\makebox(0,0)[tl]{\footnotesize Proceedings of the Ninth Prague Topological Symposium}} \put(143,50){\makebox(0,0)[tl]{\footnotesize Contributed papers from the symposium held in}} \put(143,34){\makebox(0,0)[tl]{\footnotesize Prague, Czech Republic, August 19--25, 2001}} \end{picture} \end{center} \vspace{0.25in} \setcounter{page}{71} \title{Chainable subcontinua} \author{Edwin Duda} \address{University of Miami, Department of Mathematics\\ PO Box 249085\\ Coral Gables, FL 33124-4250} \email{e.duda@math.miami.edu} \subjclass[2000]{54F20} \keywords{chainable continuum} \begin{abstract} This paper is concerned with conditions under which a metric continuum (a compact connected metric space) contains a non-degenerate chainable continuum. \end{abstract} \thanks{Edwin Duda, {\em Chainable subcontinua}, Proceedings of the Ninth Prague Topological Symposium, (Prague, 2001), pp.~71--73, Topology Atlas, Toronto, 2002; {\tt arXiv:math.GN/0204122}} \maketitle This paper is concerned with conditions under which a metric continuum (a compact connected metric space) contains a non-degenerate chainable continuum. By R.H. Bing's theorem eleven \cite{MR13:265a} if a metric continuum $X$ contains a non-degenerate subcontinuum $H$ which is hereditarily decomposable, hereditarily unicoherent, and atriodic, then $H$ is chainable. The following papers give examples of continua with the property that each non-degenerate subcontinuum is not chainable. G.T. Whyburn \cite{whyburn}. R.D. Anderson and G. Choquet \cite{MR21:3819}. A. Lelek \cite{MR26:742} gives an example of a planar weakly chainable continuum each non-degenerate subcontinuum of which separates the plane and thus contains no non-degenerate chainable subcontinuum. W.T. Ingram \cite{MR82k:54056} gives an example of an hereditarily indecomposable tree-like continuum such that each non-degenerate subcontinuum has positive span and hence is not chainable. C.E. Burgess in \cite{MR23:A3551} shows if a continuum $M$ is almost chainable and $K$ is a proper subcontinuum of $M$ which contains an endpoint $p$ of $M$, then $K$ is linearly chainable with $p$ as an end point. A continuum $M$ is almost chainable if, for every positive number $\varepsilon $, there exists an $\varepsilon$-covering $G$ of $M$ and a linear chain $C(L_1,L_2,\ldots,L_n)$ of elements of $G$ such that no $L_i$ $(1\leq i0$ $\;X$ can be mapped onto a tree. By a result quoted above $X$ is the inverse limit of a sequence of trees with surjective bonding maps. $X={\displaystyle \lim _{\longleftarrow }}\{T_n,f_{nm} \}$. Let $f_n:X\rightarrow T_n$ be the standard projection map and let $$P_n=U\{f^{-1}_n(q)|q \; \mbox{is a branch point}\}.$$ Since $T_n$ has at most a finite number of branch points (points of order $\geq 2$) $P_n$ is closed in $X$. If the union of the $P_n$ is not dense in $X$ then $X$ contains a non-degenerate chainable continuum. Actually it is sufficient that $\{P_n\}$ have a subsequence whose union is not dense in $X$. Lets now consider a non-degenerate metric continuum in $X$ with span equal to zero. The notion of span was defined by A. Lelek \cite{MR31:4009}. In the paper \cite{MR82c:54031} he showed continua with span zero are atriodic and tree-like. There is a series of papers by L.G. Oversteegen and E.D. Tymchatyn which develop properties of spaces with spans equal to zero or sufficient conditions that a space have a span equal to zero \cite{MR84h:54030, MR86a:54042, MR85j:54051, MR85m:54034}. Also by L.G. Oversteegen \cite{MR91g:54049}. It is interesting to note that a chainable continuum $X$ can be $\varepsilon $-mapped onto any fixed dendrite. Thus for any tree $T$, by the result of Marde\u{s}i\'{c} and Segal quoted above, $X$ is the inverse of a sequence of $T$'s. In the paper \cite{MR95c:54056} P. Minc shows an inverse limit of trees with simplicial bonding maps having surjective span zero is chainable. %\bibliographystyle{amsplain} %\bibliography{07} \providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace} \providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR } % \MRhref is called by the amsart/book/proc definition of \MR. \providecommand{\MRhref}[2]{% \href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2} } \providecommand{\href}[2]{#2} \begin{thebibliography}{10} \bibitem{MR21:3819} R.~D. Anderson and Gustave Choquet, \emph{A plane continuum no two of whose nondegenerate subcontinua are homeomorphic: {A}n application of inverse limits}, Proc. Amer. Math. Soc. \textbf{10} (1959), 347--353. \MR{21 \#3819} \bibitem{MR13:265a} R.~H. Bing, \emph{Snake-like continua}, Duke Math. J. \textbf{18} (1951), 653--663. \MR{13,265a} \bibitem{MR23:A3551} C.~E. Burgess, \emph{Homogeneous continua which are almost chainable}, Canad. J. Math. \textbf{13} (1961), 519--528. \MR{23 \#A3551} \bibitem{MR93a:54031} Edwin Duda and Pawe{\l} Krupski, \emph{A characterization of finitely junctioned continua}, Proc. Amer. Math. Soc. \textbf{116} (1992), no.~3, 839--841. \MR{93a:54031} \bibitem{MR82k:54056} W.~T. Ingram, \emph{Hereditarily indecomposable tree-like continua. {I}{I}}, Fund. Math. \textbf{111} (1981), no.~2, 95--106. \MR{82k:54056} \bibitem{MR26:742} A.~Lelek, \emph{On weakly chainable continua}, Fund. Math. \textbf{51} (1962/1963), 271--282. \MR{26 \#742} \bibitem{MR31:4009} \bysame, \emph{Disjoint mappings and the span of spaces}, Fund. Math. \textbf{55} (1964), 199--214. \MR{31 \#4009} \bibitem{MR82c:54031} \bysame, \emph{The span of mappings and spaces}, Topology Proc. \textbf{4} (1979), no.~2, 631--633. \MR{82c:54031} \bibitem{MR28:1592} Sibe Marde{\v{s}}i{\'c} and Jack Segal, \emph{$\varepsilon $-mappings onto polyhedra}, Trans. Amer. Math. Soc. \textbf{109} (1963), 146--164. \MR{28 \#1592} \bibitem{MR95c:54056} Piotr Minc, \emph{On simplicial maps and chainable continua}, Topology Appl. \textbf{57} (1994), no.~1, 1--21. \MR{95c:54056} \bibitem{MR91g:54049} Lex~G. Oversteegen, \emph{On span and chainability of continua}, Houston J. Math. \textbf{15} (1989), no.~4, 573--593. \MR{91g:54049} \bibitem{MR84h:54030} Lex~G. Oversteegen and E.~D. Tymchatyn, \emph{Plane strips and the span of continua. {I}}, Houston J. Math. \textbf{8} (1982), no.~1, 129--142. \MR{84h:54030} \bibitem{MR85j:54051} \bysame, \emph{On the span of weakly-chainable continua}, Fund. Math. \textbf{119} (1983), no.~2, 151--156. \MR{85j:54051} \bibitem{MR85m:54034} \bysame, \emph{On span and weakly chainable continua}, Fund. Math. \textbf{122} (1984), no.~2, 159--174. \MR{85m:54034} \bibitem{MR86a:54042} \bysame, \emph{Plane strips and the span of continua. {I}{I}}, Houston J. Math. \textbf{10} (1984), no.~2, 255--266. \MR{86a:54042} \bibitem{whyburn} G.~T. Whyburn, \emph{A continuum every subcontinuum of which separate the plane}, Amer. J. Math. \textbf{52} (1930), 319--330. \end{thebibliography} \end{document} .