Address: Markusa st. 22, Vladikavkaz,
362027, RNO-A, Russia
Phone: (8672)50-18-06
E-mail: rio@smath.ru
DOI: 10.46698/p9825-1385-3019-c
Almost Convergent 0-1-Sequences and Primes
Avdeev N. N.
Vladikavkaz Mathematical Journal 2021. Vol. 23. Issue 4.
Abstract: This paper is devoted to 0-1-sequences. We establish the connection between values that Sucheston functional can take on 0-1-sequence and multiplicative structure of the support of the sequence. If~the set of all the divisors of support elements is finite, then the sequence is almost convergent to zero. Then we consider characteristic sequences of sets of multiples and establish necessary and sufficient conditions for the upper Sucheston functional to be 1 on such sequence. We prove that there are infinitely many sets of pairwise relative prime numbers such that the lower Sucheston functional evaluates to 1 on the corresponding set of multiples (and lower Sucheston functional never evaluates to 0 on a set of multiples).
Keywords: space of bounded sequences, Banach limit, Sucheston functional, almost convergent sequence, 0-1-sequence, integer factorization, sets of multiples
For citation: Avdeev, N. N. Almost Convergent 0-1-Sequences and Primes, Vladikavkaz Math. J., 2021, vol. 23, no. 4, pp. 5-14 (in Russian).
DOI 10.46698/p9825-1385-3019-c
1. Mazur, S. O Metodach Sumowalnosci, Ann. Soc. Polon.
Math. (Supplement), 1929, pp. 102-107.
2. Banach, S.Theorie des Operations Lineaires, Sceaux,
Editions Jacques Gabay, 1993, iv+128 p.
3. Lorentz, G. G. A Contribution to the Theory of Divergent
Sequences, Acta Mathematica, 1948, vol. 80, no. 1, pp. 167-190. DOI: 10.1007/BF02393648.
4. Sucheston, L. Banach Limits, Amer. Math. Monthly, 1967, vol. 74, pp. 308-311. DOI: 10.2307/2316038.
5. Semenov, E. M., Sukochev, F. A. and Usachev, A. S. Geometry of Banach Limits and their
Applications, Russian Mathematical Surveys, 2020, vol. 75, no. 4, pp. 725.
DOI: 10.1070/RM9901.
6. Avdeev, N. On the Space of Almost Convergent
Sequences, Mathematical Notes, 2019, vol. 105, no. 3/4, pp. 464-468.
DOI: 10.1134/S0001434619030179.
7. Hall, R. R. and Tenenbaum, G. On Behrend
Sequences, Mathematical Proceedings of the Cambridge Philosophical
Society, Cambridge University Press, 1992, vol. 112, pp. 467-482.
DOI: 10.1017/S0305004100071140.
8. Davenport, H. and Erdos, P. On Sequences of
Positive Integers, Acta Arithm, 1936, vol. 2, pp. 147-151.
DOI: 10.4064/aa-2-1-147-151.
9. Davenport, H. and Erdos, P. On Sequences of
Positive Integers, J. Indian Math. Soc., New Series, 1951, vol. 15, pp. 19-24.
DOI: 10.18311/JIMS/1951/17063.
10. Besicovitch, A. On the Density of Certain Sequences of
Integers, Mathematische Annalen, 1935, vol. 110, no. 1, pp. 336-341.
DOI: 10.1007/BF01448032.
11. Hall, R. R. Sets of Multiples, Cambridge Tracts in Mathematics,
Cambridge, Cambridge University Press, 1996. DOI: 10.1017/CBO9780511566011.
12. Euler, L. Variae Observationes Circa Series Infinitas,
Commentarii Academiae Scientiarum Imperialis Petropolitanae,
1737, vol. 9, no. 1737, pp. 160-188.