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ON THE EQUATION
e = (i-%)/(i+%)

BY KoNsTANTY HOLLY

Abstract. Applying the theory of the Friedrichs extensions to some integro—
differential operator we show an equivalence of the title equation and the equa-

tion .
) <1+ L) _1 1
2 2 _ 42 g’
rELToN k2 ) (km)? -z 8

where 1+ 2N := {1,3,5,...}. Namely the sets of their non-zero real solu-
tions are identical. These solutions form an infinite sequence without finite
accumulation points.

1. The Friedrichs extension of the operator (-A): DN {f =0} —
{/=0}.

Let @ C R™ be an open set of finite Lebesgue measure (i.e. || := m(Q) <
o). For an integer s € N we will consider the Sobolev space

W*? = {ue L*: D*u € L?, Ya € N, |a] < s},

where L? := L*(Q,R), |a] := a1 + ...a, and D%u means the suitable de-
rivative of the sense of Sobolev. It is a real Hilbert space with the scalar
product
(u,w) — Z (D*u|D W), . .
lo|<s

Let W,"* denotes the closure of the subspace D of test functions on € in the
Hilbert space W2, By the following well known Sobolev inequality

-1 0
ol oty < 22 max 19211, foratl p € DR ana 1 < p <,
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(that, up to a constant, is proved in [2]) we infer that in the case n > 2 the

bilinear form
" [ Ou Ow
(’U,, U)) [ ad ((’u,lﬂ))) T Z (8;5,-'613)9

i=1

is a scalar product in W,'? inducing the topology inherited from W12, It is
also true in the case n = 1 since then

-1 . 1o

Vu e Wt s 191 Hlullze < ullze < flillee < 191 - fillze.

Let A C L? x L? denote the Friedrichs extension of the operator:
(L’D) D3¢+ —Ape L*

- see Remark (2.5) in [1].
THEOREM 1.1.
a) The operator

1
P: L? 9qw—>q——/qdm€L2
12 Ja
is the (+|-)p2 — orthogonal projection onto the hyperplane
Q

Ifq1,...,qn € W01’2 are linearly independent,
then also P(q1), ..., P(gn) are linearly independent.
b) At the notation n:= A~1(1) we have:

/ ndm = |VylZe > 0
Q

and the operator

Jqudm

1,2
—_fn dm neWw,

W 5 uws u—

is the ((-]-))-orthogonal projection onto Wg'* N {J =0}.
¢) The subspace domAg = D N {[ = 0} is L2-dense in {[ = 0} and
W2.dense in Wy> 0 {[ = 0}.
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d) The restriction Ay = Aldom 4, 8 a strictly positive operator of the

Hilberi space { [ = 0}, inf Ag > inf A.
e) Wyl n {[ = 0} with the scalar product ((+]-)) is the Fridrichs space of

Ag.
f) The Friedrichs extension Ao of the operator Ay is defined on the sub-

space
dom Ay = {uEW(}’2ﬂ{/:0}: Au € L2}

(where Au is understood in the sense of Sobolev) and

Vu € dom Ay : Zg(u) = ﬁm/ Audm — Au.
Q

PRrOOF. It is clear that P(L?) C {f = 0} and (const.|{[ = 0})2 = 0.
Let A1,...,An € R satisfy the condition

N
Z AiP(g;) =0 (equality in L?).

i=1

Then 0 = (3, Xigi) — ¢, where ¢ := ﬁfﬂ Y.: Aigidm = const. Therefore
IVe|lz> = 0 and simultaneously ¢ = Y. A\ig; € W01’2. Consequently c is the

zero-vector of the space W', or in other words:
N
Z Aigi =0 (equality in W,?).
i=1

Hence A\ =--- = Ay =0, q.e.d.

The function 7 is a non-zero element of W,"* because A(5) # 0. Then

IV7||Lz > 0. Clearly

AWMn=UMhﬁ=memm:%MMD=HVWE-

For every ¢ € Wp'? n {/ = 0} we have:

«W»=MWMB=UMH=LMm:&
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Therefore s ((+|-))-orthogonal to the subspace Wy 2N { [ = 0}. This subspace
is a hyperplane of Wol ’2, as the kernel of the functional

Wg’zauH/udmeR.
Q

Hence
Wit =Ry + (W n {/ =0}) (orthogonal sum).

The ((+|-))-orthogonal projection of an element u € W,** onto the line Ry is
equal to:

i . U = =2 u))n = m)~1 u)r2
((uI“VW”L?)) HVT/”LQ “V"?HLQ((n' ))77 (And ) (A(n)l )L'r’

= ([ dmy Qe = ([ ndm) ([ wdm)-n

Let us choose a function h € D such that fQ hdm = 1. For an arbitrarily
given function u € { = 0} (respectively u € Wy* 0 {f = 0}) there is a
sequence (,) € DN convergent to v in L? (respectively in W, ?). In particular
¢, — win L, thus fn @, dm — fQ wdm = 0. Then

Dn{/:O}a%—(/ﬂ%dm).h_w

in L? (resp. in W, ').
The propositions (d), (e), (f) results directly from Remark (2.5) and The-
orem(1.16) of [1]. O

2. The case n =1, Q =]0,1].

The Sobolev spaces W*?, Wy 2 of one-variable functions are characterized
in Examples (2.1), (2.2) in [1].

Let u € W01’2 N {f/ = 0} be a non-zero eigenvector of the operator ZB,
i.e. there exists a number A € R such that Ag(u) = Au. Clearly Mulliz =

(A;(u)|u)Lz > (infﬁé)”ullig. Hence A > 0. The function u satisfies the
boundary condition

(2.1) u(0) = u(1) = 0
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as an element of W,'® (C C[0,1]). By Theorem (1.1)
1
(2.2) i = / iidm — \u
0

(e W??). Consequently u € W*? C C3[0,1] and u satisfies the equation (2.2)
in the usual sense. We differentiate both sides of (2.2) and we obtain:

(2.3) W+ Aw =0,

where w := 4 € C?[0,1]. Therefore w = agcos vV Az + Bosin vV Az for some
Qo, ,50 € R7 and

U=w= % (—%cosx/:\_z+ %Sin\/xa:) .

Hence

3C € R: u=acosVAz + fsinVAz — C,
where a := —%, g:= —-\"7-‘;‘-. Through (2.1): C' = a and obviously
(2.4) u = acosVAz + BsinVAz — a.
By (2.4) and again by (2.1) we get
(2.5) a(1 = cos VA) = Bsin VA

Next, integrating both sides of (2.4) over 2 and remembering that u € {f =
0}, we obtain

(2.6) B(1 = cos VA) = VX — asin VA
(2.7) Assume that §=0.

Then by (2.4) a # 0 since u # 0. Hence and by (2.6) vA = sin /A, but
Vz > 0:z > sinz. In this way the hypothesis (2.7) has led to a contradiction.
Thereby 3 # 0. Consider the case

(2.8) a=0.

Then in agreement with (2.6) and (2.5): eiV* = 1,i.e. Ik € Z: VX = 27k. In
this situation £ € N\ {0} and by (2.4)

(2.9) u = fBsin 27kz.
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The case that remains is:
(2.10) a#0.

This time we multiply (2.5) and (2.6)) double-sidedly by « and 3, respectively,
and we compare the obtained equalities:

g
L+ (57

Next we multiply (2.5) and (2.6) double-sidedly by 3 and —a, respectively,
and after the comparison of the obtained equalities we get:

(2.12) sin VA = \/_

(2.11) cosVi=1-vX.

(-’3)2
By (2.11), (2.12) we have

1:cos2\/X+sin2\/X:1+ \/(—)2(\/—— )

Hence £ = 1\/X and coming back to (2.11), (2.12) we obtain:

1-(36)?
(2) sinf = 4

2.13 g=-_27) L
( ) cos 1+ (%0)2 1+ (_;_9)2

where 6 := \/X, or in the equivalent form:

g i— 30
(2.14) = " ;0
Finally by (2.4)
(2.15) u = afcosfz + gsin bz — 1) = a - uy,
where
(2.16) ug 1= cosfz + %0 sin 0z — 1.

In the cases (2.8), (2.10) the relations (2.9) and (2.15), respectively, ap-
peared and we received appropriate formulas for A.
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COROLLARY 2.17. If u is an eigenvector of the operator Z{,, then

3k e N\ {0}: v € R sin27kz
or
30 > 0 : 0 satisfies (2.14) and u € R - uy

(see (2.16)). Furthemore, the point spectrum ap(Z(;) of the operator Ay is
contained in the union of the disjoint sets:

{(27k)*: 0# ke N}, {6*:0¢€V},

where V means the class of all non-zero real roots of the equation (2.14).

Conversely, for every k € N \ {0} the function sin 27kz is an eigenvector of

the operator Ay corresponding to the eigenvalue (2wk)?. Let us consider the
number 6 € V. Then 6 satisfies (2.13) and, consequently, the introduced in

(2.16) function ug belongs to witn {J = 0}. Moreover,

1
(2.18) | (wey'am = (u)() = (ua)'(0) = —*
0
Finally, by Theorem 1.1 and the formula (2.18), we have:
,Zg(u(;) = 0% - ug.

Thus ug a is an eigenvector of the operator Zo corresponding to the eigenvalue
6. These facts together with Corollary 2.17 give

COROLLARY 2.19. 0,(Ag) = {(27k)?: 0 # k € N} U {6%: 8 € V},

V(k, ) € (N\ {0}) x V: ker (ZO — (2rk)? id) = R -sin 2rkzz,

ker (Z() -6 id) =R - uy.

Of course V is symmetric with regard to zero. Moreover,
REMARK 2.20. The set V is countable and has no accumulation points.

ProoF. By (2.18): ||ug||r2 > 0, V8 € V. By the Arzela — Ascoli theorem,
the inclusion: WO1 2 < L? is completely continuous. Clearly the inclusion:
W, n {J =0} = {J = 0} has the same property.
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-In agreement with Theorem 1.25 from [1] and Corollary 2.19,

(2.21) 05(A0) has no accumulation points on R

and
all the functions
¢k = sin 2wkz /|| sin 2wkz||2, k€ N\ {0},
(2.22) Yo := ug/||uel| L2, 6 € YN0, oof,

form orthonormal basis in { / = 0}.

Immediately from (2.19) and (2.21) we obtain:

V has no accumulation points on the line R.
It remains to prove that
(2.23) V is infinite.

(For the time being we do not know if V is non-empty!) The function
f:=(sinwz) — £ is L?-orthogonal to every ¢, k € N \ {0}. Simultaneously,
f €{ [ =0}, then in view of (2.22):

L*\{0} > f =) (flthe)re- s

eyt

(the series convergent in L?),

where V¥ := Vn|0,00[. Hence, of course, V # . The function f is not a
finite linear combination of the functions {14} because f(0) # 0 and every 1,
satisfies (2.1). Thereby (2.23) holds. 0O

THEOREM 2.24. The set V of all non-zero real solutions of the equation
(2.14) is identical with the class of all real roots of the equation

(2.25) o+ kiz) : (_k}ﬁ = %.

PRrOOF. Obviously 6 = 0 is not a solution of (2.25). However, it satisfies
the equation “Re (2.25)”, i.e.

11

(2.26) T =3

k€14+2N
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since, in agreement with Example (2.25) {from [1],

the family {V2-sinkrz:0#k ¢ N} is an orthonormal

(2.27) . :
basis in L? composed of eigenvectors of the operato A;

therefore
= 4
2 _ . . _ 4
(2.28) (L*>3) 1= kgzl(llx/ism krz)2v2sinkrz = kEIEHN o Sin krx

(the series convergent in L?);
after integration of both sides of the identity (2.28) over Q we obtain just
(2.26).

Suppose that # € V. Since none of odd multiples of the number 7 satiefies
the equation (2.14), then

(2.29) 0 ¢ (1+2Z)r.

For an arbitrary k¥ € 2N, by Corollary 2.19, the fuctions wug, sin krz are
two eigenvectors of the operator Ay corresnonding to different eigenvalues; by
Lemma 1.15-d from [1], they are L?-orthogotonal. Thereby

(2.30) (ug|sinkmwz)r2 =0, Vk € 2N.
Next, using (2.13), we calculate:

26?2

(2:31) (wolsinbme)ie = e — a7y

Vk €14 2N.

Now, by (2.27), (2.30) and (2.31), we obtain:

ug = Z(uglﬂsin krz)p2v2sin kra

(2.32) =2 Z Wsinkm;

1 1
— 402 - - &
= 40 E ir (br ) = @2 sin krz

(the series convert in L?).
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We integrate both sides of the identity (2.32) over {2 and we get the imaginary
part of the equation (2.25):

2.33 0=8(—)? e
(2.33) (= )ke;mkg (k7r)2

ug € dom A, therefore, by (2.27), the series on the right-hand side of (2.32) is
convergent also in dom A (see Theorem 1.30 in [1]) and, consequently,

_ n_ — 2 - .
(utheta)” = A(ug) = 40 kegzN o (k7r)2 5 - A(sin krz)
2.34
(234 = 46° Z = (14:71')2 sin krz
k7r C(km)? - 62

kel+2N

(the series convergent in L?).
We integrate both sides of (2.34) over Q and, remembering (2.18), we obtain
the real part of the equation (2.25):

(2.35) 6> =86 > (7r)2 o

k€i+2N

(Compare with (2.26).) Clearly, the system {(2.35), (2.33)} is equivalent to
(2.25).
Conversely, let a number 6 € R be a solution of the equation (2.25). Then
the condition (2.29) must, of course, be satisfied. The family
1

1
2N — ——— .sink
1+ Bkanr or ) =2 sin krz € dom A

is summable because it is orthogonal and

2

Z i—1—~—sinl<:7r:1:
2 _ 02
k€1+2N kr (km)? -6 dom A
1 1 2
— ——— A(sin krz)
2 |mEre ,
D L A |
= 2(sinkmz
k€142N ‘/_(lm)z L2

kel+2N V2 (kr)? - 62



151

(see Lemma(1.20) in [1]). Therefore we are allowed to put

1 1 .
(dom A 3) w := 46? Z Fr (hr) =67 sin krz
k€1+2N

(the series convergent in dom A)
- compare with (2.32). Using (2.33) we obtain: w € {/ = 0}. Thus w € {f =

0} Ndom A C dom Ay (see Theorem 1.1) and, remembering (2.35) and (2.28),
we may calculate:

(2.36)
~ 1 1
Ap(w) =/ wdm — W = A(w) - / A(w)dm

=46° Z A(smkm;)
kel+2Nk (kﬂ')2

1
— 2 . 1
40 Z k'7r (k7r)2 /0 A(sin krz)dm

kEl+2N
=462 ke%;N )2 g sin krz — 86° ke;ﬂq m
=462 ke%:QN (k7r)2 — sin krz — 62
=462 kEIZHN (k7r)2 — sinkrz — 6 . keé:?N % sin krz = 6%w

At the opportunity we have calculated:

(2.37) /QA(w)dm = 0%

in particular ||w||z2 > 0. This fact together with the following relation
(2.38) Ao(w) = 0w

obtained from (2.36), spells that 62 is an eigenvalue of the operator Ay. By
Corollary 2.19,

(2.39) 0% € {(27k)?: 0 £ ke NYU{C®: Ce V).
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(2.40) Assume that 6% = (27k)? for some k€ N\ {0}.

Then, in agreement with (2.38) and Corollary 2.19,
w € ker(Ay — (2rk)?id) = R - sin2rka.

In particular, A(w) € R - A(sin27kz) = R -sin2rkz C {J = 0}, but it is
impossible in view of (2.37). In this manner the hypothesis (2.40) has led to
a contradiction.

Thereby 6% ¢ {(27k)?: 0 # k € N} and, coming back to (2.39), we get:
0% € {¢%: ¢ eV}

Thus 6 € V since V = =V.
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