

ON THE EQUATION

$$e^{ix} = (i - \frac{x}{2}) / (i + \frac{x}{2})$$

BY KONSTANTY HOLLY

Abstract. Applying the theory of the Friedrichs extensions to some integro-differential operator we show an equivalence of the title equation and the equation

$$\sum_{k \in 1+2\mathbb{N}} \left(1 + \frac{i}{k^2}\right) \frac{1}{(k\pi)^2 - x^2} = \frac{1}{8},$$

where $1+2\mathbb{N} := \{1, 3, 5, \dots\}$. Namely the sets of their non-zero real solutions are identical. These solutions form an infinite sequence without finite accumulation points.

1. The Friedrichs extension of the operator $(-\Delta): \mathcal{D} \cap \{\int = 0\} \rightarrow \{\int = 0\}$.

Let $\Omega \subset \mathbf{R}^n$ be an open set of finite Lebesgue measure (i.e. $|\Omega| := m(\Omega) < \infty$). For an integer $s \in \mathbb{N}$ we will consider the Sobolev space

$$W^{s,2} = \{u \in L^2 : D^\alpha u \in L^2, \forall \alpha \in \mathbb{N}^n, |\alpha| \leq s\},$$

where $L^2 := L^2(\Omega, \mathbf{R})$, $|\alpha| := \alpha_1 + \dots + \alpha_n$ and $D^\alpha u$ means the suitable derivative of the sense of Sobolev. It is a real Hilbert space with the scalar product

$$(u, w) \mapsto \sum_{|\alpha| \leq s} (D^\alpha u | D^\alpha w)_{L^2}.$$

Let $W_0^{1,2}$ denotes the closure of the subspace \mathcal{D} of test functions on Ω in the Hilbert space $W^{1,2}$. By the following well known Sobolev inequality

$$\|\varphi\|_{L^{\frac{np}{n-p}}} \leq \frac{(n-1)p}{n-p} \max_{1 \leq i \leq n} \|\frac{\partial \varphi}{\partial x_i}\|_{L^p} \text{ for all } \varphi \in \mathcal{D}(\mathbf{R}^n) \text{ and } 1 \leq p < n,$$

(that, up to a constant, is proved in [2]) we infer that in the case $n \geq 2$ the bilinear form

$$(u, w) \mapsto ((u|w)) := \sum_{i=1}^n \left(\frac{\partial u}{\partial x_i} \mid \frac{\partial w}{\partial x_i} \right)_{L^2}$$

is a scalar product in $W_0^{1,2}$ inducing the topology inherited from $W^{1,2}$. It is also true in the case $n = 1$ since then

$$\forall u \in W_0^{1,2} : |\Omega|^{-\frac{1}{2}} \|u\|_{L^2} \leq \|u\|_{L^\infty} \leq \|\dot{u}\|_{L^1} \leq |\Omega|^{\frac{1}{2}} \cdot \|\dot{u}\|_{L^2}.$$

Let $A \subset L^2 \times L^2$ denote the Friedrichs extension of the operator:

$$(L^2 \supset) \mathcal{D} \ni \varphi \mapsto -\Delta \varphi \in L^2$$

– see Remark (2.5) in [1].

THEOREM 1.1.

a) *The operator*

$$P: L^2 \ni q \mapsto q - \frac{1}{|\Omega|} \int_{\Omega} q \, dm \in L^2$$

is the $(\cdot|\cdot)_{L^2}$ – orthogonal projection onto the hyperplane

$$\left\{ \int_{\Omega} q \, dm = 0 \right\} := \{q \in L^2 : \int_{\Omega} q \, dm = 0\}.$$

*If $q_1, \dots, q_N \in W_0^{1,2}$ are linearly independent,
then also $P(q_1), \dots, P(q_N)$ are linearly independent.*

b) *At the notation $\eta := A^{-1}(1)$ we have:*

$$\int_{\Omega} \eta \, dm = \|\nabla \eta\|_{L^2}^2 > 0$$

and the operator

$$W_0^{1,2} \ni u \mapsto u - \frac{\int_{\Omega} u \, dm}{\int_{\Omega} \eta \, dm} \cdot \eta \in W_0^{1,2}$$

is the $((\cdot|\cdot))$ -orthogonal projection onto $W_0^{1,2} \cap \{\int = 0\}$.

c) *The subspace $\text{dom } A_0 = \mathcal{D} \cap \{\int = 0\}$ is L^2 -dense in $\{\int = 0\}$ and $W^{1,2}$ -dense in $W_0^{1,2} \cap \{\int = 0\}$.*

- d) The restriction $A_0 = A|_{\text{dom } A_0}$ is a strictly positive operator of the Hilbert space $\{\int = 0\}$, $\inf A_0 \geq \inf A$.
- e) $W_0^{1,2} \cap \{\int = 0\}$ with the scalar product $((\cdot|\cdot))$ is the Friedrichs space of A_0 .
- f) The Friedrichs extension \widetilde{A}_0 of the operator A_0 is defined on the subspace

$$\text{dom } \widetilde{A}_0 = \left\{ u \in W_0^{1,2} \cap \left\{ \int = 0 \right\} : \Delta u \in L^2 \right\}$$

(where Δu is understood in the sense of Sobolev) and

$$\forall u \in \text{dom } \widetilde{A}_0 : \widetilde{A}_0(u) = \frac{1}{|\Omega|} \int_{\Omega} \Delta u dm - \Delta u.$$

PROOF. It is clear that $P(L^2) \subset \{\int = 0\}$ and $(\text{const.} \cdot | \{\int = 0\})_{L^2} = 0$. Let $\lambda_1, \dots, \lambda_N \in \mathbf{R}$ satisfy the condition

$$\sum_{i=1}^N \lambda_i P(q_i) = 0 \quad (\text{equality in } L^2).$$

Then $0 = (\sum_i \lambda_i q_i) - c$, where $c := \frac{1}{|\Omega|} \int_{\Omega} \sum_i \lambda_i q_i dm = \text{const.}$ Therefore $\|\nabla c\|_{L^2} = 0$ and simultaneously $c = \sum_i \lambda_i q_i \in W_0^{1,2}$. Consequently c is the zero-vector of the space $W_0^{1,2}$, or in other words:

$$\sum_{i=1}^N \lambda_i q_i = 0 \quad (\text{equality in } W_0^{1,2}).$$

Hence $\lambda_1 = \dots = \lambda_N = 0$, q.e.d.

The function η is a non-zero element of $W_0^{1,2}$ because $A(\eta) \neq 0$. Then $\|\nabla \eta\|_{L^2} > 0$. Clearly

$$\int_{\Omega} \eta dm = (1|\eta)_{L^2} = (A(\eta)|\eta)_{L^2} = ((\eta|\eta)) = \|\nabla \eta\|_{L^2}^2.$$

For every $q \in W_0^{1,2} \cap \{\int = 0\}$ we have:

$$((\eta|q)) = (A(\eta)|q)_{L^2} = (1|q)_{L^2} = \int_{\Omega} q dm = 0.$$

Therefore η is $((\cdot|\cdot))$ -orthogonal to the subspace $W_0^{1,2} \cap \{\int = 0\}$. This subspace is a hyperplane of $W_0^{1,2}$, as the kernel of the functional

$$W_0^{1,2} \ni u \mapsto \int_{\Omega} u dm \in \mathbf{R}.$$

Hence

$$W_0^{1,2} = \mathbf{R}\eta + (W_0^{1,2} \cap \{\int = 0\}) \quad (\text{orthogonal sum}).$$

The $((\cdot|\cdot))$ -orthogonal projection of an element $u \in W_0^{1,2}$ onto the line $\mathbf{R}\eta$ is equal to:

$$\begin{aligned} ((u | \frac{\eta}{\|\nabla \eta\|_{L^2}})) \cdot \frac{\eta}{\|\nabla \eta\|_{L^2}} &= \|\nabla \eta\|_{L^2}^{-2} ((\eta | u)) \eta = (\int_{\Omega} \eta dm)^{-1} (A(\eta) | u)_{L^2} \eta \\ &= (\int_{\Omega} \eta dm)^{-1} (1 | u)_{L^2} \eta = (\int_{\Omega} \eta dm)^{-1} (\int_{\Omega} u dm) \cdot \eta. \end{aligned}$$

Let us choose a function $h \in \mathcal{D}$ such that $\int_{\Omega} h dm = 1$. For an arbitrarily given function $u \in \{\int = 0\}$ (respectively $u \in W_0^{1,2} \cap \{\int = 0\}$) there is a sequence $(\varphi_{\nu}) \in \mathcal{D}^N$ convergent to u in L^2 (respectively in $W_0^{1,2}$). In particular $\varphi_{\nu} \rightarrow u$ in L^1 , thus $\int_{\Omega} \varphi_{\nu} dm \rightarrow \int_{\Omega} u dm = 0$. Then

$$\mathcal{D} \cap \{\int = 0\} \ni \varphi_{\nu} - (\int_{\Omega} \varphi_{\nu} dm) \cdot h \rightarrow u$$

in L^2 (resp. in $W_0^{1,2}$).

The propositions (d), (e), (f) results directly from Remark (2.5) and Theorem (1.16) of [1]. \square

2. The case $n = 1, \Omega =]0, 1[$.

The Sobolev spaces $W^{s,2}$, $W_0^{s,2}$ of one-variable functions are characterized in Examples (2.1), (2.2) in [1].

Let $u \in W_0^{1,2} \cap \{\int = 0\}$ be a non-zero eigenvector of the operator \widetilde{A}_0 , i.e. there exists a number $\lambda \in \mathbf{R}$ such that $\widetilde{A}_0(u) = \lambda u$. Clearly $\lambda \|u\|_{L^2}^2 = (\widetilde{A}_0(u) | u)_{L^2} \geq (\inf \widetilde{A}_0) \|u\|_{L^2}^2$. Hence $\lambda > 0$. The function u satisfies the boundary condition

$$(2.1) \quad u(0) = u(1) = 0$$

as an element of $W_0^{1,2}$ ($\subset C[0,1]$). By Theorem (1.1)

$$(2.2) \quad \ddot{u} = \int_0^1 \ddot{u} dm - \lambda u$$

($\in W^{2,2}$). Consequently $u \in W^{4,2} \subset \mathcal{C}^3[0,1]$ and u satisfies the equation (2.2) in the usual sense. We differentiate both sides of (2.2) and we obtain:

$$(2.3) \quad \ddot{w} + \lambda w = 0,$$

where $w := \dot{u} \in \mathcal{C}^2[0,1]$. Therefore $w = \alpha_0 \cos \sqrt{\lambda}x + \beta_0 \sin \sqrt{\lambda}x$ for some $\alpha_0, \beta_0 \in \mathbf{R}$, and

$$\dot{u} = w = \frac{d}{dx} \left(-\frac{\beta_0}{\sqrt{\lambda}} \cos \sqrt{\lambda}x + \frac{\alpha_0}{\sqrt{\lambda}} \sin \sqrt{\lambda}x \right).$$

Hence

$$\exists C \in \mathbf{R}: u = \alpha \cos \sqrt{\lambda}x + \beta \sin \sqrt{\lambda}x - C,$$

where $\alpha := -\frac{\beta_0}{\sqrt{\lambda}}$, $\beta := -\frac{\alpha_0}{\sqrt{\lambda}}$. Through (2.1): $C = \alpha$ and obviously

$$(2.4) \quad u = \alpha \cos \sqrt{\lambda}x + \beta \sin \sqrt{\lambda}x - \alpha.$$

By (2.4) and again by (2.1) we get

$$(2.5) \quad \alpha(1 - \cos \sqrt{\lambda}) = \beta \sin \sqrt{\lambda}.$$

Next, integrating both sides of (2.4) over Ω and remembering that $u \in \{f = 0\}$, we obtain

$$(2.6) \quad \beta(1 - \cos \sqrt{\lambda}) = \alpha \sqrt{\lambda} - \alpha \sin \sqrt{\lambda}.$$

$$(2.7) \quad \text{Assume that } \beta = 0.$$

Then by (2.4) $\alpha \neq 0$ since $u \neq 0$. Hence and by (2.6) $\sqrt{\lambda} = \sin \sqrt{\lambda}$, but $\forall x > 0: x > \sin x$. In this way the hypothesis (2.7) has led to a contradiction.

Thereby $\beta \neq 0$. Consider the case

$$(2.8) \quad \alpha = 0.$$

Then in agreement with (2.6) and (2.5): $e^{i\sqrt{\lambda}} = 1$, i.e. $\exists k \in \mathbf{Z}: \sqrt{\lambda} = 2\pi k$. In this situation $k \in \mathbf{N} \setminus \{0\}$ and by (2.4)

$$(2.9) \quad u = \beta \sin 2\pi kx.$$

The case that remains is:

$$(2.10) \quad \alpha \neq 0.$$

This time we multiply (2.5) and (2.6) double-sidedly by α and β , respectively, and we compare the obtained equalities:

$$(2.11) \quad \cos \sqrt{\lambda} = 1 - \sqrt{\lambda} \cdot \frac{\frac{\beta}{\alpha}}{1 + (\frac{\beta}{\alpha})^2}.$$

Next we multiply (2.5) and (2.6) double-sidedly by β and $-\alpha$, respectively, and after the comparison of the obtained equalities we get:

$$(2.12) \quad \sin \sqrt{\lambda} = \sqrt{\lambda} \cdot \frac{1}{1 + (\frac{\beta}{\alpha})^2}.$$

By (2.11), (2.12) we have

$$1 = \cos^2 \sqrt{\lambda} + \sin^2 \sqrt{\lambda} = 1 + \frac{\sqrt{\lambda}}{1 + (\frac{\beta}{\alpha})^2} \left(\sqrt{\lambda} - 2 \cdot \frac{\beta}{\alpha} \right).$$

Hence $\frac{\beta}{\alpha} = \frac{1}{2} \sqrt{\lambda}$ and coming back to (2.11), (2.12) we obtain:

$$(2.13) \quad \cos \theta = \frac{1 - (\frac{1}{2} \theta)^2}{1 + (\frac{1}{2} \theta)^2}, \quad \sin \theta = \frac{\theta}{1 + (\frac{1}{2} \theta)^2},$$

where $\theta := \sqrt{\lambda}$, or in the equivalent form:

$$(2.14) \quad e^{i\theta} = \frac{i - \frac{1}{2}\theta}{i + \frac{1}{2}\theta}.$$

Finally by (2.4)

$$(2.15) \quad u = \alpha \left(\cos \theta x + \frac{\beta}{\alpha} \sin \theta x - 1 \right) = \alpha \cdot u_\theta,$$

where

$$(2.16) \quad u_\theta := \cos \theta x + \frac{1}{2} \theta \sin \theta x - 1.$$

In the cases (2.8), (2.10) the relations (2.9) and (2.15), respectively, appeared and we received appropriate formulas for λ .

COROLLARY 2.17. *If u is an eigenvector of the operator \tilde{A}_0 , then*

$$\exists k \in \mathbf{N} \setminus \{0\}: u \in \mathbf{R} \cdot \sin 2\pi kx$$

or

$$\exists \theta > 0: \theta \text{ satisfies (2.14) and } u \in \mathbf{R} \cdot u_\theta$$

(see (2.16)). Furthermore, the point spectrum $\sigma_p(\tilde{A}_0)$ of the operator \tilde{A}_0 is contained in the union of the disjoint sets:

$$\{(2\pi k)^2: 0 \neq k \in \mathbf{N}\}, \quad \{\theta^2: \theta \in \mathcal{V}\},$$

where \mathcal{V} means the class of all non-zero real roots of the equation (2.14).

Conversely, for every $k \in \mathbf{N} \setminus \{0\}$ the function $\sin 2\pi kx$ is an eigenvector of the operator \tilde{A}_0 corresponding to the eigenvalue $(2\pi k)^2$. Let us consider the number $\theta \in \mathcal{V}$. Then θ satisfies (2.13) and, consequently, the introduced in (2.16) function u_θ belongs to $W_0^{1,2} \cap \{\int = 0\}$. Moreover,

$$(2.18) \quad \int_0^1 (u_\theta)'' dm = (u_\theta)'(1) - (u_\theta)'(0) = -\theta^2.$$

Finally, by Theorem 1.1 and the formula (2.18), we have:

$$\tilde{A}_0(u_\theta) = \theta^2 \cdot u_\theta.$$

Thus u_θ is an eigenvector of the operator \tilde{A}_0 corresponding to the eigenvalue θ^2 . These facts together with Corollary 2.17 give

COROLLARY 2.19. $\sigma_p(\tilde{A}_0) = \{(2\pi k)^2: 0 \neq k \in \mathbf{N}\} \cup \{\theta^2: \theta \in \mathcal{V}\}$,

$$\begin{aligned} \forall (k, \theta) \in (\mathbf{N} \setminus \{0\}) \times \mathcal{V}: \ker \left(\tilde{A}_0 - (2\pi k)^2 \text{id} \right) &= \mathbf{R} \cdot \sin 2\pi kx, \\ \ker \left(\tilde{A}_0 - \theta^2 \text{id} \right) &= \mathbf{R} \cdot u_\theta. \end{aligned}$$

Of course \mathcal{V} is symmetric with regard to zero. Moreover,

REMARK 2.20. *The set \mathcal{V} is countable and has no accumulation points.*

PROOF. By (2.18): $\|u_\theta\|_{L^2} > 0, \forall \theta \in \mathcal{V}$. By the Arzela – Ascoli theorem, the inclusion: $W_0^{1,2} \hookrightarrow L^2$ is completely continuous. Clearly the inclusion: $W_0^{1,2} \cap \{\int = 0\} \hookrightarrow \{\int = 0\}$ has the same property.

In agreement with Theorem 1.25 from [1] and Corollary 2.19,

$$(2.21) \quad \sigma_p(\tilde{A}_0) \text{ has no accumulation points on } \mathbf{R}$$

and

all the functions

$$(2.22) \quad \begin{aligned} \varphi_k &:= \sin 2\pi kx / \|\sin 2\pi kx\|_{L^2}, & k \in \mathbf{N} \setminus \{0\}, \\ \psi_\theta &:= u_\theta / \|u_\theta\|_{L^2}, & \theta \in \mathcal{V} \cap]0, \infty[, \\ & \text{form orthonormal basis in } \{ \int = 0 \}. \end{aligned}$$

Immediately from (2.19) and (2.21) we obtain:

$$\mathcal{V} \text{ has no accumulation points on the line } \mathbf{R}.$$

It remains to prove that

$$(2.23) \quad \mathcal{V} \text{ is infinite.}$$

(For the time being we do not know if \mathcal{V} is non-empty!) The function $f := (\sin \pi x) - \frac{2}{\pi}$ is L^2 -orthogonal to every φ_k , $k \in \mathbf{N} \setminus \{0\}$. Simultaneously, $f \in \{ \int = 0 \}$, then in view of (2.22):

$$L^2 \setminus \{0\} \ni f = \sum_{\theta \in \mathcal{V}^+} (f|\psi_\theta)_{L^2} \cdot \psi_\theta$$

(the series convergent in L^2),

where $\mathcal{V}^+ := \mathcal{V} \cap]0, \infty[$. Hence, of course, $\mathcal{V} \neq \emptyset$. The function f is not a finite linear combination of the functions $\{\psi_\theta\}$ because $f(0) \neq 0$ and every ψ_θ satisfies (2.1). Thereby (2.23) holds. \square

THEOREM 2.24. *The set \mathcal{V} of all non-zero real solutions of the equation (2.14) is identical with the class of all real roots of the equation*

$$(2.25) \quad \sum_{k \in 1+2\mathbf{N}} \left(1 + \frac{i}{k^2}\right) \cdot \frac{1}{(k\pi)^2 - \theta^2} = \frac{1}{8}.$$

PROOF. Obviously $\theta = 0$ is not a solution of (2.25). However, it satisfies the equation "Re (2.25)", i.e.

$$(2.26) \quad \sum_{k \in 1+2\mathbf{N}} \frac{1}{(k\pi)^2} = \frac{1}{8}'$$

since, in agreement with Example (2.25) from [1],

(2.27) the family $\{\sqrt{2} \cdot \sin k\pi x : 0 \neq k \in \mathbb{N}\}$ is an orthonormal basis in L^2 composed of eigenvectors of the operator A ;

therefore

$$(2.28) \quad (L^2 \ni) \quad 1 = \sum_{k=1}^{\infty} (1|\sqrt{2} \sin k\pi x)_{L^2} \sqrt{2} \sin k\pi x = \sum_{k \in 1+2\mathbb{N}} \frac{4}{k\pi} \sin k\pi x$$

(the series convergent in L^2);

after integration of both sides of the identity (2.28) over Ω we obtain just (2.26).

Suppose that $\theta \in \mathcal{V}$. Since none of odd multiples of the number π satisfies the equation (2.14), then

$$(2.29) \quad \theta \notin (1+2\mathbb{Z})\pi.$$

For an arbitrary $k \in 2\mathbb{N}$, by Corollary 2.19, the functions u_θ , $\sin k\pi x$ are two eigenvectors of the operator \tilde{A}_0 corresponding to different eigenvalues; by Lemma 1.15-d from [1], they are L^2 -orthogonal. Thereby

$$(2.30) \quad (u_\theta|\sin k\pi x)_{L^2} = 0, \quad \forall k \in 2\mathbb{N}.$$

Next, using (2.13), we calculate:

$$(2.31) \quad (u_\theta|\sin k\pi x)_{L^2} = \frac{2\theta^2}{k\pi((k\pi)^2 - \theta^2)}, \quad \forall k \in 1+2\mathbb{N}.$$

Now, by (2.27), (2.30) and (2.31), we obtain:

$$(2.32) \quad \begin{aligned} u_\theta &= \sum_{k=1}^{\infty} (u_\theta|\sqrt{2} \sin k\pi x)_{L^2} \sqrt{2} \sin k\pi x \\ &= 2 \sum_{k \in 1+2\mathbb{N}} \frac{2\theta^2}{k\pi((k\pi)^2 - \theta^2)} \sin k\pi x \\ &= 4\theta^2 \sum_{k \in 1+2\mathbb{N}} \frac{1}{k\pi} \cdot \frac{1}{(k\pi)^2 - \theta^2} \cdot \sin k\pi x \end{aligned}$$

(the series converges in L^2).

We integrate both sides of the identity (2.32) over Ω and we get the imaginary part of the equation (2.25):

$$(2.33) \quad 0 = 8\left(\frac{\theta}{\pi}\right)^2 \sum_{k \in 1+2\mathbf{N}} \frac{1}{k^2} \cdot \frac{1}{(k\pi)^2 - \theta^2}.$$

$u_\theta \in \text{dom } A$, therefore, by (2.27), the series on the right-hand side of (2.32) is convergent also in $\text{dom } A$ (see Theorem 1.30 in [1]) and, consequently,

$$(2.34) \quad \begin{aligned} -(u_{theta})'' &= A(u_\theta) = 4\theta^2 \sum_{k \in 1+2\mathbf{N}} \frac{1}{k\pi} \cdot \frac{1}{(k\pi)^2 - \theta^2} \cdot A(\sin k\pi x) \\ &= 4\theta^2 \sum_{k \in 1+2\mathbf{N}} \frac{1}{k\pi} \cdot \frac{1}{(k\pi)^2 - \theta^2} \cdot (k\pi)^2 \sin k\pi x \end{aligned}$$

(the series convergent in L^2).

We integrate both sides of (2.34) over Ω and, remembering (2.18), we obtain the real part of the equation (2.25):

$$(2.35) \quad \theta^2 = 8\theta^2 \sum_{k \in 1+2\mathbf{N}} \frac{1}{(k\pi)^2 - \theta^2}.$$

(Compare with (2.26).) Clearly, the system $\{(2.35), (2.33)\}$ is equivalent to (2.25).

Conversely, let a number $\theta \in \mathbf{R}$ be a solution of the equation (2.25). Then the condition (2.29) must, of course, be satisfied. The family

$$1 + 2\mathbf{N} \ni k \mapsto \frac{1}{k\pi} \cdot \frac{1}{(k\pi)^2 - \theta^2} \cdot \sin k\pi x \in \text{dom } A$$

is summable because it is orthogonal and

$$\begin{aligned} &\sum_{k \in 1+2\mathbf{N}} \left| \frac{1}{k\pi} \frac{1}{(k\pi)^2 - \theta^2} \sin k\pi x \right|_{\text{dom } A}^2 \\ &= \sum_{k \in 1+2\mathbf{N}} \left\| \frac{1}{k\pi} \frac{1}{(k\pi)^2 - \theta^2} A(\sin k\pi x) \right\|_{L^2}^2 \\ &= \sum_{k \in 1+2\mathbf{N}} \left\| \frac{1}{\sqrt{2}} \frac{k\pi}{(k\pi)^2 - \theta^2} \sqrt{2}(\sin k\pi x) \right\|_{L^2}^2 \\ &= \sum_{k \in 1+2\mathbf{N}} \left(\frac{1}{\sqrt{2}} \frac{k\pi}{(k\pi)^2 - \theta^2} \right)^2 < \infty \end{aligned}$$

(see Lemma(1.20) in [1]). Therefore we are allowed to put

$$(\text{dom } A \ni) \quad w := 4\theta^2 \sum_{k \in 1+2\mathbb{N}} \frac{1}{k\pi} \frac{1}{(k\pi)^2 - \theta^2} \sin k\pi x$$

(the series convergent in $\text{dom } A$)

- compare with (2.32). Using (2.33) we obtain: $w \in \{\int = 0\}$. Thus $w \in \{\int = 0\} \cap \text{dom } A \subset \text{dom } \tilde{A}_0$ (see Theorem 1.1) and, remembering (2.35) and (2.28), we may calculate:

(2.36)

$$\begin{aligned} \tilde{A}_0(w) &= \int_0^1 \ddot{w} dm - \ddot{w} = A(w) - \int_0^1 A(w) dm \\ &= 4\theta^2 \sum_{k \in 1+2\mathbb{N}} \frac{1}{k\pi} \frac{1}{(k\pi)^2 - \theta^2} A(\sin k\pi x) \\ &\quad - 4\theta^2 \sum_{k \in 1+2\mathbb{N}} \frac{1}{k\pi} \frac{1}{(k\pi)^2 - \theta^2} \cdot \int_0^1 A(\sin k\pi x) dm \\ &= 4\theta^2 \sum_{k \in 1+2\mathbb{N}} \frac{k\pi}{(k\pi)^2 - \theta^2} \sin k\pi x - 8\theta^2 \sum_{k \in 1+2\mathbb{N}} \frac{1}{(k\pi)^2 - \theta^2} \\ &= 4\theta^2 \sum_{k \in 1+2\mathbb{N}} \frac{k\pi}{(k\pi)^2 - \theta^2} \sin k\pi x - \theta^2 \\ &= 4\theta^2 \sum_{k \in 1+2\mathbb{N}} \frac{k\pi}{(k\pi)^2 - \theta^2} \sin k\pi x - \theta^2 \cdot \sum_{k \in 1+2\mathbb{N}} \frac{4}{k\pi} \sin k\pi x = \theta^2 w. \end{aligned}$$

At the opportunity we have calculated:

$$(2.37) \quad \int_{\Omega} A(w) dm = \theta^2;$$

in particular $\|w\|_{L^2} > 0$. This fact together with the following relation

$$(2.38) \quad \tilde{A}_0(w) = \theta^2 w$$

obtained from (2.36), spells that θ^2 is an eigenvalue of the operator \tilde{A}_0 . By Corollary 2.19,

$$(2.39) \quad \theta^2 \in \{(2\pi k)^2 : 0 \neq k \in \mathbb{N}\} \cup \{\zeta^2 : \zeta \in \mathcal{V}\}.$$

(2.40) Assume that $\theta^2 = (2\pi k)^2$ for some $k \in \mathbb{N} \setminus \{0\}$.

Then, in agreement with (2.38) and Corollary 2.19,

$$w \in \ker(\tilde{A}_0 - (2\pi k)^2 \text{id}) = \mathbf{R} \cdot \sin 2\pi kx.$$

In particular, $A(w) \in \mathbf{R} \cdot A(\sin 2\pi kx) = \mathbf{R} \cdot \sin 2\pi kx \subset \{\int = 0\}$, but it is impossible in view of (2.37). In this manner the hypothesis (2.40) has led to a contradiction.

Thereby $\theta^2 \notin \{(2\pi k)^2 : 0 \neq k \in \mathbb{N}\}$ and, coming back to (2.39), we get:

$$\theta^2 \in \{\zeta^2 : \zeta \in \mathcal{V}\}.$$

Thus $\theta \in \mathcal{V}$ since $\mathcal{V} = -\mathcal{V}$.

References

1. Holly K., *Theory of the Friedrichs operator and some its applications*, in press.
2. Sobolev S. L., *Some applications of functional analysis to mathematical physics*, COAH CCCP, Novosibirsk, 1962. (Russian)

Received November 12, 1990

Institute of Mathematics
 Jagiellonian University
 30 - 059 Kraków, ul. Reymonta 4
 Poland