

A Criterion for Polynomial Conditions of Leja's Type in C^N

by Wiesław PLEŚNIAK (Kraków)

Abstract. We give a sufficient condition for the pair (E, μ) , where E is a subset of C^N and μ is a measure on E , to satisfy the Leja condition (L^*) . It generalizes in particular a criterion of the L -regularity proved by Cegrell [2] and Sadullaev [9].

1. The condition (L^*) . Let E be a Borel subset of the space C^N of N complex variables. Let μ be a nonnegative function defined on a family of subsets of E containing all Borel subsets, and such that $\mu(\emptyset) = 0$ (in the sequel such a function μ will be simply called a measure). The pair (E, μ) is said to satisfy *condition (L^*) at a point $a \in \bar{E}$* if for every subfamily \mathcal{F} of the family $\mathcal{P}(C^N)$ of all polynomials from C^N to C^1 such that

$$(*) \quad \mu(\{z \in E: \sup_{f \in \mathcal{F}} |f(z)| = +\infty\}) = 0,$$

and for every $b > 1$, there exists a constant $C > 0$ and a neighborhood U of a such that for each $f \in \mathcal{F}$,

$$|f(z)| \leq C b^{\deg f} \quad \text{for } z \in U.$$

By the well-known polynomial lemma of Leja [4], if E is a subset of C^1 , $a \in \bar{E}$ and for a certain $t_0 > 0$, $\mu(E) = t_0$, where $\mu(A) := m_1(\{t \in [0, t_0]: E \cap C(a, t) \neq \emptyset\})$, then (E, μ) satisfies (L^*) at a : here m_1 is the Lebesgue linear measure and $C(a, t)$ denotes the circle of radius t centered at a . Other examples of pairs (E, μ) satisfying (L^*) as well as references to papers related to this condition can be found in [5] and [8]. We notice that if v is a measure on E that dominates μ (i.e. $v(A) = 0$ implies $\mu(A) = 0$) and (E, μ) satisfies (L^*) at $a \in \bar{E}$, then clearly (E, v) also satisfies (L^*) at a . The purpose of this note is to prove a geometric criterion for a pair (E, μ) to satisfy (L^*) at a point. The criterion will generalize that given in [7] and, in particular, it will contain a criterion of the L -regularity proved recently by Cegrell [2] and Sadullaev [9].

2. The L -regularity. Denote by \mathcal{L} the set of all plurisubharmonic functions u in C^N such that $u(z) - \log(1 + |z_1| + \dots + |z_N|)$ is uniformly bounded from above in C^N . Given a subset E of C^N , the function

$$V_E(z) = \sup\{u(z): u \in \mathcal{L}, u \leq 0 \text{ on } E\}$$

is called the *extremal plurisubharmonic function* associated with E (see [11], [10]). The set E is said to be *L-regular at a point $a \in \bar{E}$* if $V_E^*(a) = 0$, where $V_E^*(z) = \limsup_{z \rightarrow w} V_E(w)$ is the upper regularization of V_E . E is said to be *L-regular* if it is L-regular at every point $z \in \bar{E}$. By a result of Zaharjuta [11] and Siciak [10], it can be shown (see [5]) that for each measure μ , if E is a compact subset of \mathbf{C}^N and (E, μ) satisfies (L^*) at $a \in E$, then E is L-regular at a .

We shall need the following important lemma (see [1])

2.1. LEMMA. *Suppose $\{K_n\}$ is an increasing sequence of compact sets in \mathbf{C}^N such that the set $K = \bigcup_{n=1}^{\infty} K_n$ is compact. Then if K is L-regular at a point $a \in K$, we have $\lim_{n \rightarrow \infty} V_{K_n}^*(a) = 0$.*

2.2. Remark. As was observed by Klimek [3], Lemma 2.1 remains true if K is bounded (not necessarily closed) since then $\lim_{n \rightarrow \infty} V_{K_n}^*(z) = V_K^*(z)$, $z \in \mathbf{C}^N$. This observation can be used to show (see [3]) that for every L-regular compact set E in \mathbf{C}^N the pair (E, c) satisfies (L^*) , c denoting the *L-capacity* of E ,

$$c(E) = \liminf_{|z| \rightarrow \infty} |z| \exp(-V_E^*(z)).$$

Observe that if $N = 1$, $c(E)$ is simply equal to the logarithmic capacity of E .

The following proposition is a slightly stronger version of Cegrell [2], prop. 3.3.

2.3. PROPOSITION (see [8], prop. 4.5). *Let E be a subset of \mathbf{C}^N and h a holomorphic mapping from an open set $U \subset \mathbf{C}^1$ to \mathbf{C}^N . Let I be a compact subset of U , L-regular at a point $t_0 \in I$, and such that $h(I) \subset \bar{E}$. If then E is L-regular at every point $h(t)$ for $t \in I \setminus \{t_0\}$, E is also L-regular at $h(t_0)$.*

2.4. COROLLARY (analytic attainment criterion). *Let E be a subset of \mathbf{C}^N and h an analytic mapping from $[0, 1]$ to \mathbf{C}^N . If E is L-regular at every point of the set $h([0, 1])$, then E is L-regular at $h(0)$.*

2.5. Remark. Corollary 2.4 is due to Cegrell [2], prop. 3.3 and generalizes a criterion of the L-regularity announced in [7]. The same result has been obtained by Sadullaev [9].

3. The main result.

3.1. THEOREM. *Let E be a subset of \mathbf{C}^N . Let μ be a measure on E and let $a \in \bar{E}$. Suppose h is a holomorphic mapping from an open set U in \mathbf{C}^1 to a neighborhood of a in \mathbf{C}^N . Let I be a compact subset of U , L-regular at a point $t_0 \in I$ such that $h(t_0) = a$. If for each $t \in I \setminus \{t_0\}$ the pair (E, μ) satisfies (L^*) at $h(t)$ then it also satisfies (L^*) at a .*

Proof. Let \mathcal{F} be a subfamily of $\mathcal{P}(\mathbf{C}^N)$ satisfying (*). Fix $b > 1$. By the assumptions, for each positive integer n there exist constants $\delta_n > 0$ and $C_n > 0$ such that for each $f \in \mathcal{F}$,

$$\sup_{z \in F_n} |f(z)| \leq C_n b^{\deg f/2},$$

where $F_n := \{z \in \mathbf{C}^N : \text{dist}(z, h(I_n)) \leq \delta_n\}$ with $I_n := \left\{t \in I : |t - t_0| \geq \frac{1}{n}\right\}$. Since every ball in \mathbf{C}^N is L -regular, by Proposition 2.3 the set $F = \bigcup_{n=1}^{\infty} F_n \cup \{a\}$ is L -regular at a . Hence by Lemma 2.1, setting $G_n := \bigcup_{k=1}^n F_k \cup \{a\}$ gives $\lim_{n \rightarrow \infty} V_{G_n}^*(a) = 0$. By [10], prop. 3.11, $V_{G_n}^* = V_{K_n}^*$, where $K_n = \bigcup_{k=1}^n F_k$ for $n = 1, 2, \dots$. Hence, since each K_n is L -regular, there is a positive integer n_0 and a neighborhood V of a such that

$$V_{K_n}(z) < (\log b)/2 \quad \text{for } z \in V.$$

Consequently, since for every polynomial $f \in \mathcal{P}(\mathbf{C}^N)$

$$|f(z)| \leq \|f\|_{K_n} \exp[\deg f \cdot V_{K_n}(z)], \quad z \in \mathbf{C}^N,$$

we get for each $f \in \mathcal{F}$,

$$\sup_{z \in V} |f(z)| \leq C_0 b^{\deg f}$$

with $C_0 = \max\{C_1, \dots, C_{n_0}\}$. The theorem is proved.

Let now E be a subset of $\mathbf{R}^N := \{z = (z_1, \dots, z_N) \in \mathbf{C}^N : \text{Im } z_j = 0, j = 1, \dots, N\}$ and μ a measure on E . Suppose (E, μ) satisfies the following requirement

(I) For each interval $I = [a_1, b_1] \times \dots \times [a_N, b_N] \subset E$, (I, μ) satisfies (L^*) .

Such a condition for the pair (E, μ) has appeared in a natural way in the theory of quasianalyticity in spaces of integrable functions (see [6]). By the polynomial lemma of Leja and Fubini's theorem, if m_N is the Lebesgue N -dimensional measure, then (E, m_N) satisfies (I). Hence in particular, since m_N is absolutely continuous with respect to the L -capacity c , (E, c) also satisfies (I) (see also Remark 2.2). From Theorem 3.1 we derive

3.2. COROLLARY (analytic attainment criterion for (L^*)). *Suppose E is a subset of \mathbf{R}^N and μ is a measure on E such that (E, μ) satisfies (I). If there exists an analytic mapping $h: [0, 1] \rightarrow \bar{E}$ such that $h([0, 1]) \subset \text{int } E$, then (E, μ) satisfies (L^*) at $h(0)$.*

3.3. Remark. A weaker version of Corollary 3.2 (with $\mu = m_N$) was announced in [7].

3.4. Remark. By Cegrell [1], a compact subset E of \mathbf{C}^N is L -regular at a point $a \in E$ if and only if for the counting measure μ on E , (E, μ) satisfies (L^*) at a . Hence Theorem 3.1 is a generalization of Proposition 2.3.

References

- [1] U. Cegrell, *Some Characterizations of L-regular Points*, Monatshefte für Math. 89 (1980), 289-292.
- [2] U. Cegrell, *Thin sets in C^n* , Univ. Jagello. Acta Math. 25 (to appear).
- [3] M. Klimek, *L-regularity of sets in C^n* , Thesis, Jagellonian University, Kraków 1981 (see also Proc. Roy. Irish Acad. Sect. A vol. 82 (2) (1982), 217-230).
- [4] F. Leja, *Sur les suites des polynômes bornées presque partout sur la frontière d'un domaine*, Math. Ann. 108 (1933), 517-524.
- [5] W. Pleśniak, *Invariance of some polynomial conditions for compact sets in C^N under holomorphic mappings*, Zeszyty Nauk. Uniw. Jagielloń. 22 (1980), 19-28.
- [6] W. Pleśniak, *Quasianalyticity in F-spaces of integrable functions*, Proceedings of the International Conference on Approximation Theory and Function Spaces, Gdańsk (Poland), August 27-31, 1979, ed. Z. Cieślinski, PWN Warszawa, North-Holland Publ. Comp. Amsterdam. New York. Oxford, 1981, 558-571.
- [7] W. Pleśniak, *Sur les conditions polynomiales du type Leja dans C^N* , Comptes rendus Acad. Sci. Paris 290 (1980), Série A, 309-311.
- [8] W. Pleśniak, *Sur la L-régularité des compacts de C^N* , Polycopié de la Faculté des Sciences de Toulouse, U.E.R. de Math., Toulouse 1980.
- [9] A. Sadullaev, *Locally and globally P-regular compact sets in C^n* , Dokl. Akad. Nauk SSSR 250 (1980), 1324-1327 (Russian).
- [10] J. Siciak, *Extremal plurisubharmonic functions in C^n* , Proceedings of the First Finnish-Polish Summer School in Complex Analysis at Podlesice, University of Łódź 1977, 115-152 (see also Ann. Polon. Math. 34 (1981), 175-211).
- [11] W. P. Zaharjuta, *Extremal plurisubharmonic functions, orthogonal polynomials and the Bernstein-Walsh theorem for analytic functions of several complex variables*, Ann. Polon. Math. 33 (1976), 137-148 (Russian).

INSTYTUT MATEMATYKI UJ
UL. REYMONTA 4
30-059 KRAKÓW
POLAND

Received December 1, 1980.

Added in proof

In Corollary 3.2 it suffices to assume the curve h is semianalytic (see also [12]).

- [12] W. Pleśniak, *L-regularity of subanalytic sets in R^N* , preprint, 1984.