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Non-commutative calculus
and Pilgerschritt transformation

| by Roman LiEpL

The Pilgerschritt (Pilgrim step) transformation is a method of solving the translatlon'
functional equation (cf. [1, 7,8, 11, 12, 14]). In this paper we give a theory of non-commu-
tative integration (cf. [9, 10, 13, 15, 16]) and non-commutative differentiation (cf. [2, 4, 5])
which allows us to describe the Pilgerschritt transformation in a- very natural»way

Let G be a complete Hausdorff group with group operation * and unit element e, and ‘
let I(G) be the set of all continuous group homomorphisms ¢: R — G, where R denotes

_the additive group of reals. Let [, b= R denote a compact non-empty interval. Differ-
entiation of a function F: V; — V¥, (V;, V, real Banach spaces) in the classical sense gives
a function F': ¥, - Hom(V,, V,). Analogously we shall see that differentiation of
a function F: R —» G gives a function F: R — I(G).

1. Integration. Let U%(e) denote the filter base of symmetric neighbourhoods of the
unit element e € G. For Ve U%e) let V* = {(x, y)|x * y~! e V}. The set {V*|V e Ue)}
forms the basis of a filter of entourages of the so-called right uniformity on G. This uni-
formity is complete because G is complete. The sets V* are symmetric.

For V'e U%(e) and a>0 let be

= {(¢, M1, ¥ I(G), pit) Y (t) ' eV for |t|<a}

It is simple to show that {V,|V € U(e), a>0} forms a basis for the filter of entourages of
a complete Hausdorff uniformity on /(G).

A step function f: [a, b] - I(G) is a function such that there ex1sts a “suitable” sub-
division a = a,<a,£...Za, = b with f constant over (a;,a,+,) (k=0,1,..,n—1).
S[a, b] denotes the set of all these step functions. A basis for the filter of entourages of
a uniformity on S[a, b] is formed by all sets ‘

ylabl = {f, 9\ f. g€Sla,bl, (), g(x))e V,, x€la, b, Ve U¥e),a>0}.

In general this unlform:ty of Sla, b] is not complete.
So far we have considered three uniform spaces, namely G, /{(G) and S]a, b] We
define the group G to be admissible for integration if the function

{:Sla,bl-Gf-> | f
{a.b1 [a.b}
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with

(RIS B,

[a,b] -

has a continuous extension on the umform completion RJa, b} of S[a, b]. In this context
a = aOSa,S .Za, = b denotes a suitable subdivision. Analogously to the integral

introduced by Cauchy we define the (product —) integral j Ria,b] - G ‘which is
[a,b1
a generalization of Cauchy’s integral and which is related to Volterra’s product integral

on the group GL(n, R). Indeed, assume that G is admissible for integration. Then we.

define | as the continuous extension of | from Sla,b] to Rla, b].
fa,b] [a,b]
There is a canonical way of interpreting the elements f* of Rl[a, b] as functions

S [a, 8] » I(G). If f* € R[a, b], then there exists a Cauchy filter % . on S{a, b] which
represents f*. For Fe #% and x, € [a, b] let be

F?* = {fx)|feF}.

Then {F*|Fe #} is a Cauchy filter in /(G) and converges to an element ¢ € /(G). We
define f'(x,) := ¢. A function f given in this way may be called regulated. We have the
following.

THEOREM: A function x: [a, b] - I(G) is regulated iff for each x, € [a,b] there exists
lim yx(x) and for each x, € (a, b] there exists lim x(x).

X—+Xp+0 x=+x0—0

The proof of this theorem follows the proof of the classical analogue, e.g., in [3].

" 2. Differentiation and Pilgerschritt transformation. Let @: [a, b] — G be an arbiirary
function and let be x, € [a, b). The right derivative d°® (&, x,) of & at the argument x,
and the increment =0 is defined by

é m
d*® (&, x,) = lim [d>(x0+—) * d-""l(xo):l
if this limit exists and the sequence converges uniformly in & over a compact interval
[0, £] (¢>0) and is a continuvous function.in &. If <0 we define
dQ@(és xO) = [d0¢(_§’ xO)]w1 .

TueoREM: The right derivative d°®(.,xy): R— G; £~ d®(E,xy) is a continuous’
group homomorphism and therefore an element in 1(G).

Because of the supposed continuity the proof may be reduced to proving that
&S (E+n, %) = dD(E, %0) * d°B (7, Xo)

for rational &,1n, £E+ne(0, €] (cf.-[8] p. 10)..
There is an analogous definition and theorem for the left derivative d*®(¢, x,)
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3. Connection between differentiation and integration.

TreoREM: If f: [a, b] - I(G) is regulated, x, € [a, b), F(t) = | f. then

[a,1]

dFE, %) = ( lim fG))@ for EeR,

x—+x0+0

(if xo €(a, b] then d*F(¢, %)= ( lim f(x))(&) for E€R).

x—-xo—0

Proof. If me N let g,.: [X0, &) = {(G) be such that

o) = f) i ze[xoﬂ‘?, xo+("“)‘f]
. m m

where n =0,1,2,...,m—1 and ¢ = x0+ﬁ+s. Define y,,: [xq, €)= I(G) by
m

. n¢
9u(?) if ¢ # Xo+—,
() = | nt
lim f(x) ift=xo+—, n=(0,1,..,m-1).
x—=xo+0 m
-Then _f Im = j Y and y,(m - o0) tends in R[a, b] to the constant functlon with
[x0,£] [x0,8]

value lim f(x)e/(G). Therefore

x-xo+0
dCFE x) = m[ | f+[ ] fI7'"

n—o [a,xo+&/ml {a,x0]
=1lim[ [ f# I f*l I i
m=+ [xo0,x0+&/m] [a,x0] [a,x0]
=lim[ [ fI"= lim | 9
m—a [x0,x0+&/m] m—w [xo0,X0+¢]
=1lim | y,=( lim f@)E©.
m  [xo,x0+¢] x-x9+0

The existence of d°F(&, x,) is obvious. . )
A function f: [a, b] = I(G) is said to be C! if d% (., xo) = d*(., xo) for x, € (a, b)
and if the function df(.,): [a, b] = I{G) defined by :

4 (. x0) = {jf (2x) ot Hoele.d)
'f(.,b)  for x9=050
is continuous.
A function f: [a,b] > I(G) can be multiplied by a real number. If 7€ R let
tf: [a, b] — I(G) be defined as zf (&, xo) = f (&, xo).

Examples:
1. If G = R then all these definitions and theorems prove to be classmal the set /(R)

has only to be identified with R by (@: t - at) «>a.
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2. If G = GL(n, R), then we shall show in the more general case of the group of units
in a real Banach algebra that G is admissible for integration.
A function f: [a, b] = GL(n, R) is C'iff itis C! in the classical sense (but this classical
sense is differéntiability in our sense concerning the additive group of all real (1, n)-matri-
" ces). We have

df (¢, xo) = lim —f(x0+§) .f(xo)_l]m

m-o0

= lim (f(XQ) +éf'(xo)) 'f(xo)—l:l

mwaw |

= lim FE+§1 Fi(xo) - f(xo)"l] = exp(&f ' (xo) f(x0) ™),

m-rao|

(E is the unit matrix). Let M,(R) be the set of all real (n, n)-matrices. Each element
@ €(GL(n, R)) has the form o¢() = exp(t4) with A e M, (R). Therefore a function
f: la, b] - I(GL(n, R)) may be interpreted as a function f: [a, b] » M(R). The elemen-
tary Euler method for numerical integration of linear differential equations shows (cf. [13]

and [8]) that for a function fand r e [a, b] we have j' S = F(r), where F() is the solytion
[a,1]
of the matrix differential equatlon

F'(t) = f (t)F(t) with 1n1t1al condition F(a) =

If we have f: [a, b] - M, (R) and a real number 7 then 1f: [a, b] — M,(R) is given by
T (x0) = T f(x0)- .

‘Definition (Pilgerschritt transformation): Let G be a complete Hausdorff group
- which is admissible for integration and let f: [0, 1] - G be a C! function with £(0) = e.

Then the Pilgerschritt transform f: [0, 1] — G is given by f(7) = f Tdf.
' [0,11

Examples:

1. If G = R then f(¢) =0frf'(t)dt = 2(f(1)=f(0)) = 77 (1).

2 K G= GL(n, R) then f(r) = X(1), where X is the solution of the matrix differ-
ential equation X'(¢) = =f'(t) ()~ X(¢) with initial condition X(0) =

4. Examples for admissible groups. ,
- THEOREM: Let be G = V the additive group of a locally convex linear space Then V is
admissible for integration.

Proof. Use the fact that there exists a family {|| |,},cp of semmorms Wthh generates
the topology in V (cf. [6]).

THEOREM: The group G of units of a real Banach algebra B with unit element 1 is
admissible for integration. \
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Proof. If hel(G), then h(f) = exp(t4) with 4 B and conversely if_ Be B, then
t — exp(tB) is in [(G). Therefore the notation A(t) = exp(th*) is used and /(g) is identified
with B. If A, Be B and [t|<a and b = max{]|4|, | B|}, then )

lexp(14)—exp(tB)| < | A— Bl ae® .
We first state two Lemmae.

Lemma 1: If s.:[0,11 = (G) and s,: [0,1] > I{G) are step ‘functions and
0=ay<a,5...2a, =1 is a subdivision suitable for s, and s, and if si(t) = exp(t4y)
and s,(t) = exp(tBy) for t€(ay-1,a) then '

I§ sl § 52]—1_1"éexp(3max("Ak":“Bk"))max(”Ak_Bk”)-
[0,11 10,11 ‘

We say that 4, Be B and ¢>0 fulfil condition (*) iff for every [t|<1 -
lexp(tA)exp(—1B)—1]<e and [exp(tByexp(—~td)~1|<e. (%)

If e<1 and 4, B e B and ¢ fulfil condition (x)andif B, Ce B and ¢ fulfil condition (%) also,
“then 4, C and 3¢ fulfil condition (%).

LemMMa 2: If M>0 and n>0 are given, then there exists £>0 such that |A—B|<n
if |4l<M and A, B and ¢ fulfil condition ().

To prove that G is admissible for integration we may 'suppose that [a, b] = [0,1].
‘We have to show that each Cauchy filter on S[0, 1] has a convergent image under the

integral [ . If £>0'and a Cauchy filter # on S[0, 1] are given, then there exists an
[0,11
element Fe & such that s, 5, € F implies

I sl § sl ' =1l<e

) 0,11 [0,1]
The Cauchy filter # converges pointwise to a regulated function f: [0, 1] — /(G). Each
regulated function on [0, 1] is bounded, which means that there exists a number M >0
such that ||( f (x))ll <M for x € [0, 1]. If 5 is given with 0<f<M, then Lemma 2 implies
the existence of a number 1>&>0 which ensures for all 4, Be B with | 4] <2M and
A, B, ¢ fulfilling condition (%) that |4 — B|| <#. Choose F € # such that for each 5,, 5, € F
and for each x € [0, 1] condition () is fulfilled for (s,(x))*, (s,(x))* and &/3. Then con-
dition () is fulfilled for (s,(x))*, (f(x))* and & From Lemma 2 w¢ may conclude that
I(s1())*—(f(x))*I|<n and therefore |(s;(x))*| <M +n<2M. Again from Lemma 2
we conclude that |(s,(x))* —(s,(x))*| <n for x € [0, 1]. Therefore we have

I(s2(0)*| <n+2M<3M .

With Lemma 1 we get
I j 510 I 32];1—1||<99M’7-

Now we take n = min(se™®™, M/2). Then F is so small that (S) holds true, q.e.d.

'
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