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On the Difference Method for a Non-Linear Parabolic Functional- i
Differential Equation

1. In this paper we shall consider the following functional-differential equation |

wn o du f - du ou *u *u @)
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We construct the correspondmg difference equation and we prove the convergence of the
“difference method.
2. We shall consider the following sets

2.1 . E: 0<1<d, 0<x;<0, d>0, 6>0 (=1, ...,p)
. 14
.2 P =X[0,0]
_ P
@3) D‘= 0<<d, 0<x;<0, —co<u<+ ‘ -
) —00<g;<+0w©, —0<w;<+w0, 5 B(P)

where B(P) is the set of the bounded functions for x € P with norm

@4 | lsll = max sG] S .

xeP
‘and the nodal points

—ukx=vh ;4—-01 N, v=0,1,..,N(G=1,..,p)
(2.5)

d
O<k=— ,0< h-—-——
Ny N,

Ny, N, being two, natural numbers.
The nodal points with coordinates

(2.6) ' (", x™) where x" - T, L, X™P)

P

are characterized by the sequence of indices

.(2-7) ' , M= (u,m where m=(my,.., m,)
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' We shall define the following sets ‘

Z = the set of the sequence M = (i, m), such that 0<u< N, and OémISN,, .(j =1, ..,p)
and ‘ : ’
Z* = the set of the sequences M = (u, m) such that 0<u<N,, 0<m;<N,, for all jn-
dices j except at most one value j, for which — 1<m;<N,+1. We shall also use the nodal
points characterized by .the sequences ‘
2.8 M = (1, m), j(M) = (p, j(m), —j(M) = (4, —(M))
where o . '

j(m) = (ml R mj_l 3 mj+ 1 ’ mj_“ PRILES mp)

"‘"j(m) = (ml, s Mg, m_,—l, Mjiqs e m’)

A Suppose that to each nodal point ‘characterized by the sequence there corresponds

a number v¥.
. We shall introduce the following definitions

oM = ilc (000 M)

oM = 1 (M —p= Iy
2h - '

M4 — (M1, .., vM7)

29 30
1 . .
Mt = 0700 —20% +07 )
MO = (M, L 0MP) (j=1,..,P)
- ) = L M)

| vMef“
where : ,
(2.10) Z¢ = {M: 0<m;<N,—1,( =1, ..,p)}
@iy Ly = {X: mh<x;<(mi+Dh(i=1, vy D)}
and :

' . ot xely

2.12) x,M(x) = {0 xél,

In the sequel we shall use the following assumptions H.

3. ASSUMPTIONS H

1°. Assume that the function f(z, x, u, ¢, w, 5), where X = (X, ..., X)), 4 = (g1s > 9p)s
W = Wy, ..., Wp, is defined in the set D (2.3) and is of the class C? as the function

of (t, x,u,q) and of the class C° as the function of s.
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© 2°. The function f(t, x, u, q, w, 5) satisfies the conditions

G0 er, 0<g< L <q
9 ow; ,
~and h ; ?
3G2) . J {f(t,x,u, g, w, N—f{t,x,id,q,w, )<Lu—ii
’ S, x,u, g, w, N—ft, x,u,q, w, H<SK||s-35]|

3°. The time interval k and the space interval h are chosen to satisfy

' : g I 2pG 1
3.3 —==20, ——-<0
@3 h 2 Pk
The function i{r(t, x) is of the class C2 in the set E, and satisfies the functional — equa-
tion (1.1) and the boundary conditions.

(3.49) u(0, x) = ¢(x)

. du
B +iut, ) =0, x=0

(3.5 o i . G=1,..,p)

Fil .
] ~u+vi’u(t,x) =0, x;=¢
é’xj
where . }
BD*+@)* #0 and iyl =0

and ' . T
‘ B+ %0, Bpi-vi=0.
We suppose first that g3 # 0 and B4 5 0.

Denote by 1™ the value of the solution of equation (1.1) at the nodal point (2.6),
We shall define the value of the solution at the points x; = —h and x; = o+h,

— T (M
3.6 u_-"“’ = /™ for M= (u,m,...m_;,0,m,,,..,m)eZ
WM =TI for M= (u,my, ..., M1y Nuy Mysgs oy mp)€Z

Hence it follows that ™ satisfies the following boundary conditions.

37 Bl +yluM =0 for M= (u,my,..,m_1,0,m,,...,m)eZ
' B4yl =0 for M= (smys s my_, Ny Mgy, m)eZ

where - _
(B +G) #0 and B9/ =0, (j=1,..,p), (= 1,...,p)
The bbundary conditions for the approximate solution o™ are:
M = (™) for M =(0,m)
(38) (MM =0 for M=(u,my,..m.,,0,m,,,...m)eZ
BioMipiM =0 for M= (,u,ml,...,mj_l‘,N,,,ij,...,m,)eZ
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where .
B +@H* #0  and Blyi=0G=1,..p (=1, s D)

The values v¥ at the remaining nodal points we define successively starting from (3.8) with
the aid of the difference equation

39 oM~ = £, %, oM, oM, MO, ()

4. LEMMA 1

- Let us suppose that the assumptions H are fulfilled, then the numbers ™ satisfy the
difference equation ‘ '

[~ =1 o ME uME, G ())
@.1) for MeZ (0<u<N,.,), where max |n¥|—0

as h—0, when p/and pi#0 (j=1,..,p)

Proof: This lemma is obvious for M = (¢, m), where 1<m;<N,—1, (j = 1,...p),
since f is of the class ¢! and the corresponding differences and sum (2.9) tend to the cor-
responding derivatives u(t, x) and to. u(z, *). If for some j.m;=0or m; =N, then 1™/

. . .. Ou ou

is equal to the derivative — or —
' Xjlxs=0 0% ;=

and (3.7. It is necessary to prove that for m; = 0 or m; = N,

by the boundary conditions (3.5)

) 62
42) Mt — 5;1;(’“’ X™M—0 as ko0
M . j .

We suppose that m; = 0.
Then we have:

, u , 0%u y
4.3) u(P) = u(Q)+ — (@) x;+1x; —— (@) +remainder

where
P =(t,xg,..,X,) and 0 = (2, Xg 5 eoes Xj—1 05 X5 ey Xph

It is true, by (3.7), that

ou(Q)
ox;

0

(4.4)

From (4.3) we have

2 ou 2 u
45 ';?(“(P)"“(Q))‘é;j (@) = = 5320

3
7 0xj
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as x;—0 and hence, by (4.4) .

@8 S e-u)- —;;(Q)—»o a0

If P and Q are the éorrespondmg nodal pomts, it is necessary to prove that
@7n ;f (u(P)‘—u(Q)) = M4 for }nj =0

It is equivalent to V

2 .
(4.8) p(u’w)—uy) = uM'” for M= (ﬂ, My eeey m.i_l, 0, mJ-+1, eery m,)

We have by the definition of #** and the definition (3.6)

0 L2 M =S IO M SO0
e - R '

'(‘4'.9) My = - ;?2_ G190 — My,

. Py .
- This ends the proof that #*%— a—;(Q) as h—0.
: x5

In the case when for certain j, m; = N, lemma can be proved in a similar manner.

Remark 1 p

If in the boundary condmons (3.5) B} = pi =0 (j=1, ..., p) then the numbers u™
satisfy \

HM=0, - M=(ﬂ,m1, -..,mj-l,o,mj.'.i,.u,mp)
(4.10) uM = 0, M= U‘fml""’ mj_l,N,,,nj.,.i,..., mp)
M= p(x"), M=(0,m)
‘We shall accept precisely the same conditions for v™. Then the exact solution is equal to

the approximate solution at the boundary points. The thesis of lemma 1 is true for M€ Z
such that 0<pu<N,—1, 1<Sm<N—1 (=1, ..., p)

Remark 2

In the case when Bi =0 and B # 0or B} # 0, ﬁz = 0) we define the value of the
solution at the points. x; = o+h (or x; = —F) as in (3.6) and we find that uM satisfies
=o(x"), M=(0,m)
4.9 M=0, M= (u,ml,...,m_,_l,O,m_,-H,' vy M)

M
M =0, M=(ﬂ:ml,o--,mj—uNh,mﬁp---smp)
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or Lo :
M ="o(x"), M=0,m)
@10) =0, M=y my 0y my )
- \ Elu”=0.’ ' M=(,u,ml,...,mj-l,N,,mJ“,...,mp)

We shall accept exactly the same conditions for the numbers v™. The eiact solution is equay
to the approximate solution at the points of E'such that x; = 0(orx; = o +h)(j = 1, ..., p),

Lemma 1 is then true for M e Z such that

0<pu<N,—1, 1<m<N,, (or 0Ku<N,_;, 0Sm<N,—=1).

5. LEMMA 2

Suppose that the numbers Rf(u = 0, 1, ...) satisfy the difference inequality
(5.1) RSL R 4e,p=0,1,.. '

and the initial condit‘ion R° = 0, the difference R*”~ being defined by
(5.2 R —(RPYI-RY p=0,1, ...
. H

for 0<H = const, 0<L,; = const, 0<& = const.
‘Under these assumptions

(5.3) R S i1y p=0,1,..
L ‘

This lemma is due to Z. Kowalski [1].

6. LEMMA 3

Suppose that v™ are defined by (3.8) and (3.9). Suppose also that the assumptions H are
satisfied and denote S

6.1) ™= MM ‘
(6.2 , © o =max™ 2=minM  for M= (u,meZ
(6.3) © R* = max}r|

m

Under these assumptions s and z* satisfy the conditions

(6.4) P =2=R =0




and the inequalities

' (6.5) {s‘"" S(L+K)R*+e(h)

2L+ KR —s(h), u=0,1,..,Ny—1

Pl:oof : The condition (6.4) follows from the initidl conditions (3.7) and (3.8).
'We shall prove the first part of (6.5). ‘
The values s**1 and s* are attained at certain nodal points

1 = maxrt+ 1Lm = At = oW

©6) s = maxrh™ = p#b = /P
where .
A=(u,d)eZ B=(u,beZ
Hence i
67 &= 1(s“""l--s") ! (ro@ 8 = 1 (r°@ ) + l(r“-—yiv"'): i+ 1(r“—r") .
k Tk k k k

We shall first consider the case when B{ aé Oand B #0(j=1,..,p).
From (7.1), (3.9) and (5.1) we have ‘ '

(6.8) rA™ = uh™ — o™ = A A, 1, B, AP, @ () = f(, X, o4, o0, 8()) :

The right side of (13.8) may be written as

(69 A7 = A f (2, X0 ut Al AR, ) —f (8, X2, vt ut T, @)

+f(t“) xﬂ, UAJ uAAa uAD$ al‘(.)) '—f(t”’ xas vA: uAA$ uAU) 6”(')) ‘
H1(, X, o4, uhe, A0, () —f(, 37, o4, 044, 010, $C)

From the mean value theorem and by the assumptions (3.2) it follows that
(6.10) A~ <+ Liw' — o] + KJ[i*(x) - " ()l +

P P )

+ Y Lo =04+ Y £ ()t —v*)
i=1 - Jj=1

From the definitions 2, 9 it follows that

. N = 1 (;.i(k) —rmia)
. 2h
6.11) .
2V — A = 7 (H® =274 )

and by (2.9) and (2.4) we have _
Iiﬁ"(i)—ﬁ" Gl = max | Y (M5 (0)— 0™y, ()] = max [uM—o|

x€p  MeZr MeZ»
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Now we introduce (6. 11) in (6.10) and (6.7) and we obtain " ‘

(6.12) s"" <n+Lirt|+ Z (,.,)__(,J(A) rmiay

MeZ*

P
+Z —{(~)[ (@ 24 +r"-’“")]+Kmax M —o¥|

J=1

+EZr‘—r3) = rr‘+Lr“+Kmax [}

MeZ*

Zg(fv) [P0 P i )

Cd=1 -

14
+Z 'éa-‘};f"'; (N)hlz {(rj(d)_rﬁ)_z(rd_r,B)_i_('—j(A)_ry)]

Jj=1

+- (r" ) = A+L|rA| +K max |PM]+ (P _ B

MeZ+
r

. o of - iy _
Zﬁx( (~)+ aw_,-( ))-i—(r A _ By

Jn

1 af 1 of
DNCERS >—2—,,-a—;<~>)

=

, NG —r‘)( ijf() )

j=1
By (6.6) we have ‘
6.13) o _ 2o
and by (3.3) :
1 6f 1 af T l(g r) 0

From (6.12) and (6 13) it follows that

' 4 _ 1 of 1 of ~)
- (6.15) (r ')Z(zh a%( )+ co,( ) §0

Then by (6.6) we get
(6.16) : pi —r”so,




o o I v

’and by (3.3)

: 1 of 1 of r g 1fg I
1(6'”) "3 ( ~)- ma,( Z=mt e h(z z)
From (6.16) and (6.17) it follows that

_ 1 of 1 of
i _ By 2 - (M) )<
(6.18) I r")(h2 3 ;( =5 aj( ))<0
‘By (6.6) we have
(6.19) rP—r>0,
and by (3.3) ‘
\ p
| 2o, .1 2p0 1
€20 D SR g

j=1

From (6.19) and (6.20) it follows that

©21) (P —rt hzZ(ﬂ(N)_l)«)
. B W

Jj=1
By (6.15), (6.18) and (6.21) the last three terms in (6.12) are non-positive, and by (6 12)
we obtain
s~ <t + LI +K max /| <e(h)+ L+ K) R*

where ‘
' e(h) = maxin"l, since |r4|<R* and max |[PM|<R*

MeZr

In the case when #{ = 0 (or g} = 0), if for some j, a; = 0 (or @; = Ny), then the ine-
qualities (6.5) are evident since by the boundary conditions

r@_A =0 and r2>0, .

‘and by. (6.7) we have s,. <0; on the contrary the right hand of the inequality (6.5) is non-

negative. ! _ ‘

In the remaining cases, i.e. when for every j, a; # 0 (a; # N,), by remark 1 or remark 2

we may use lemma 1 and the proof of lemma 3 is analogous, as in the case when #{ and

B #0.
' The second inequality in (6.5) can be proved in a similar manner.

~

7. LEMMA 4

Let us suppose that s* and z* are defined by (7.2). Under these assumptions
7.1) [maxr¥]” <max(s*~, —z*~), for M = (u,m).

This lemma can, easily be proved starting from the relation max || = max (s, —z").
. . m
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o 8. LEMMA 5 . , : o

s

Let us suppose that the assumptlons H are fulfilled and R* is deﬁned by (6. 3) Under
these assumptions R“ satisfies the difference inequality \

@1 = (L+K)R* +e(B)(u = 0,1, .., No—1).
From the definition (6.3) and lemma 4 we obtain

(8.2 , R*™ = (max |P|)” <max(s*~, —z"7).

The quantities s and z* satisfy (6.5), therefore
(8.3) R"”'smax((L+K)R“+s(h),(L+K)R”+e(h))
= (L+K)R"+e(h) for (u=0,1,..,N-1).

“This ends the proof of Lemma 5.

9. Theorem 1. Suppose that the assumptions H are fulfilled. Then we have the follow~
ing conclusions:
{1) the error estimate

h ..
™< Lf-_il(e‘“‘_"‘“—l)

(2) the difference method is convergent i.e.

im™ =0.
h-0

Proof (2) follows from (1), since ku<d. and &(h)—0 as h—9.
Lemmas 5 and 1 imply that

; h
R"zi)(‘“"“‘ D, @ = 0,1, ey Ne=1)

But || <R*, because of the definition of R*, hence |r"‘l< () (“"'""" l) This

ends the proof of theorem 1.
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