

Jan Chmielowski

Some Remarks on Domains of Holomorphy

1. **Introduction.** We shall denote by $\mathcal{O}(\Omega)$ the vector space of all functions holomorphic in a domain $\Omega \subset C^n$. Given $a \in \Omega$ and $f \in \mathcal{O}(\Omega)$, let $T_a f$ denote the Taylor series of f at a . We shall denote by $\varrho(T_a f)$ the radius of the maximal ball in which the series $T_a f$ is absolutely convergent.

Let F be any non empty subset of $\mathcal{O}(\Omega)$ and K be a compact set in Ω . We say that K is F -convex if

$$(1) \quad K = \hat{K}_F \stackrel{\text{df}}{=} \{z \in \Omega: |\varphi(z)| \leq \sup_{z \in K} |\varphi(z)|, \varphi \in F\}.$$

If $F = \mathcal{O}(\Omega)$ and $K = \hat{K}_{\mathcal{O}(\Omega)}$ we say that K is holomorphically convex.

We say that a function $f \in \mathcal{O}(\Omega)$ is prolongable to the outside of Ω , if there is a point $c \in \Omega$ such that $\varrho(T_c f) > \text{dist}(c, \partial\Omega)$.

In this note we shall give two proofs of the following theorem due to J. P. Kahane [2].

Theorem 1. Let $\Omega \subset C^n$ be a domain, $K \subset \Omega$ be a holomorphically convex compact set, and let

$$(2) \quad C_*^\infty(K) \stackrel{\text{df}}{=} \{\psi \in C^\infty(\text{Int } K): \forall \alpha \in \mathbf{Z}^n \quad D^\alpha \psi \text{ is prolongable continuously to } K\}.$$

Then there exists a function $f \in \mathcal{O}(\text{Int } K) \cap C_*^\infty(K)$ not prolongable to the outside of K .

We denote $A(K) = \mathcal{O}(\text{Int } K) \cap C_*^\infty(K)$.

In the first proof we shall use the following Banach theorem [1]:

Assume that E, F are any Fréchet spaces and

$$(3) \quad \Phi: E \rightarrow F$$

is a linear and continuous mapping. Then either $\Phi(E) = F$ or $\Phi(E)$ is a set of the first category in F .

In the second proof we shall use the fact that $A(K)$ is a Baire space (for it is metrizable and complete).

The proof proposed by Kahane is based on some properties of the Rademacher series [2].

2. First we notice that the vector space $A(K)$ is the Fréchet space, the topology of which is given by the family of seminorms

$$(4) \quad q_\nu(f) \stackrel{\text{df}}{=} \sup_{z \in K} \sum_{|\alpha| \leq \nu} |D^\alpha f(z)|, \quad (\nu = 0, 1, \dots), \quad f \in A(K),$$

where $D^\alpha f$, $\alpha \in \mathbb{Z}^n$ denotes the continuous prolongation of the α -th derivative of f to K . If $\{f_k\}_{k \in \mathbb{N}} \subset A(K)$ and $f \in A(K)$ we shall say that $f_k \rightarrow f$ when $k \rightarrow \infty$ in $A(K)$ if and only if for every $\nu = 0, 1, \dots$ $\lim_{k \rightarrow \infty} q_\nu(f_k - f) = 0$. The topological vector space $A(K)$, equipped with this topology, is complete.

Lemma. Assume that K is a compact set in a domain $\Omega \subset C^n$ such that $K = \hat{K}_{\Omega(\Omega)}$. Let c be an arbitrary point of $\text{Int } K$ and r be any positive number greater than $\text{dist}(c, \partial K)$.

Then

$$(5) \quad A_r(c) = \{f \in A(K) : \varrho(T_c f) \geq r\}$$

is a set of the first category in $A(K)$.

Proof. Observe that

$$(6) \quad A_r^*(c) = \{(f, T_c f) : f \in A_r(c)\}$$

is the Fréchet space with the following family of seminorms

$$(7) \quad q_\nu^*[(f, T_c f)] \stackrel{\text{df}}{=} q_\nu(f) + \sup_{z \in B_\nu} |T_c f(z)|, \quad \nu = 0, 1, \dots$$

where q_ν , $\nu = 0, 1, \dots$ are given by the formula (4) and

$$B_\nu = \left\{ z \in C^n : \|z - c\| \leq \frac{r}{\sqrt{2}} \right\}, \quad \nu = 1, 2, \dots, B_0 \stackrel{\text{df}}{=} B_1.$$

To end this proof we remark that the mapping

$$(8) \quad \pi: A_r(c) \ni (f, T_c f) \rightarrow f \in A(K)$$

is linear and continuous in the sense of the topology introduced above. Now, for every $a \in (\Omega \setminus K) \cap \{z \in C^n : \|z - c\| < r\}$ there exists a function $\varphi \in \Omega(\Omega)$ such that $|\varphi(a)| > \sup_{z \in K} |\varphi(z)|$. Since the function $f(z) = [\varphi(z) - \varphi(a)]^{-1}$ belongs to $A(K)$ and $f \notin A_r(c)$ we have $A(K) \neq A_r(c) = \pi(A_r^*(c))$. Thus by Banach's theorem $A_r(c)$ is a set of the first category in $A(K)$.

3. The first proof of Theorem 1. Let $\{c_k\}$ be any countable and dense subset of $\text{Int } K$. Let us denote

$$A_n(c_k) = \left\{ f \in A(K) : \varrho(T_{c_k} f) \geq \text{dist}(c_k, \partial K) + \frac{1}{n} \right\} \quad k, n = 1, 2, \dots$$

and

$$(9) \quad P = \{f \in A(K); f \text{ is prolongable to the outside of } K\}.$$

Then $P = \bigcup_{k,n=1}^{\infty} A_n(c_k)$. Since $A_n(c_k)$, $k, n \in \mathbb{N}$ are sets of the first category, P is a set of the first category in $A(K)$, so $A(K) \setminus P \neq \emptyset$.

4. The second proof of Theorem 1. Let $\{c_k\}$ be any countable and dense subset in $\text{Int } K$. Put

$$B_{k,v} = \{z \in C^n; \|z - c_k\| < \text{dist}(c_k, \partial K) + r_{k,v}\}, \quad k, v = 1, 2, \dots$$

where for every $k \in \mathbb{N}$, $\{r_{k,v}\}_{v \in \mathbb{N}}$ is a decreasing sequence of positive numbers such that

$$1^{\circ} \lim_{v \rightarrow \infty} r_{k,v} = 0, \text{ for } k = 1, 2, \dots$$

$$2^{\circ} B_{k,v} \subset \Omega, \text{ for } k, v = 1, 2, \dots$$

Observe that

$$(10) \quad P_{k,l,v} = \{f \in A(K); \sup_{z \in B_{k,v}} |T_{c_k} f(z)| \leq l\}, \quad k, l, v = 1, 2, \dots$$

are closed subsets of $A(K)$. Moreover for every $f, g \in P_{k,l,v}$ and for every $a, \beta \in C$ such that $|a| + |\beta| \leq 1$ we have

$$|T_{c_k}(af + \beta g)(z)| \leq |a||T_{c_k}f(z)| + |\beta||T_{c_k}g(z)| \leq l, \quad z \in B_{k,v}.$$

Thus $P_{k,l,v}$ are absolutely convex. We remark that $P = \bigcup_{k,l,v=1}^{\infty} P_{k,l,v}$, where P is defined by (9). Now, we have two possibilities: either $\text{Int } P_{k,l,v} = \emptyset$ for every $k, l, v \in \mathbb{N}$ and then P is the set of the first category in $A(K)$; or there exist $k, l, v \in \mathbb{N}$ such that $\text{Int } P_{k,l,v} \neq \emptyset$. We shall prove that the second case is impossible. Indeed, $P_{k,l,v}$ is an absorbing subset in $A(K)$, because $P_{k,l,v}$ is absolutely convex with a non empty interior. Hence

$$(11) \quad \forall f \in A(K) \exists M > 0: \lambda \in C, |\lambda| \geq M \Rightarrow f \in \lambda P_{k,l,v}.$$

Now, let us take any point $a \in (\Omega \setminus K) \cap B_{k,v}$ and a function $\varphi \in \mathcal{O}(\Omega)$ such that $|\varphi(a)| > \sup_{z \in K} |\varphi(z)|$. Since $f(z) = [\varphi(z) - \varphi(a)]^{-1} \in A(K)$, there exist $\lambda \in C$ and $g \in P_{k,l,v}$ such that $f = \lambda g$. The function g is prolongable holomorphically to the ball $B_{k,v}$, so also is f , but this is impossible.

Corollary. If $\text{Int } K$ is not a domain of holomorphy, then there exists a ball $B = B(a, r)$, $a \in \text{Int } K$, $r > \text{dist}(a, \partial K)$ such that every function $f \in A(K)$ is prolongable holomorphically into B .

Proof. Indeed, $A(K) = P = \bigcup P_{k,l,v}$. Thus there must exist numbers $k, l, v \in \mathbb{N}$ such that $\text{Int } P_{k,l,v} \neq \emptyset$. Hence $P_{k,l,v}$ is an absorbing set in $A(K)$, thus

$$A(K) = \bigcup_{p \in \mathbb{N}} p P_{k,l}.$$

Using the method of second proof of Theorem 1 we may obtain the following well known result:

If $D \subset C^n$ is not a domain of holomorphy, then there exists a ball $B = B(a, r)$, $a \in D$, $r > \text{dist}(a, \partial D)$ such that every function $f \in \mathcal{O}(D)$ is holomorphically prolongable into this universal ball B .

5. Let $F \subset \mathcal{O}(\Omega)$ be any non empty family. Observe that Lemma and Theorem 1 hold for any compact set $E \subset \Omega$ such that $E = \hat{E}_F$ (instead of $K = \hat{K}_{\mathcal{O}(\Omega)}$). The proofs of these facts are exactly the same as the proofs of previous versions. In particular a compact set E may be polynomially convex or an analytic polyhedron.

Now, let us denote

$$H^\infty(K) = \{f \in \mathcal{O}(\text{Int } K) : f \text{ is bounded on } K\}$$

$$A^p(K) = \left\{ f \in \mathcal{O}(\text{Int } K) : \begin{array}{l} \forall a \in \mathbb{Z}_+^n, |a| \leq p, D^a f \text{ is prolongable} \\ \text{continuously to } K \end{array} \right\} \quad 0 \leq p \leq \infty$$

Then $A^\infty(K) = A(K)$.

Since we may equip the vector spaces $\mathcal{O}(\text{Int } K)$, $H^\infty(K)$ and $A^p(K)$, $(0 \leq p \leq \infty)$ with Fréchet topologies, and since

$$(12) \quad A(K) \subset \dots \subset A^{p+1}(K) \subset A^p(K) \subset \dots \subset A^0(K) \subset H^\infty(K) \subset \mathcal{O}(\text{Int } K)$$

the following theorem holds

Theorem 2. Let F be any non empty subset of $\mathcal{O}(\Omega)$ and K be any compact set in Ω such that $K = \hat{K}_F$. If A is one of the spaces (12), then there is a function $f \in A$ not prolongable holomorphically to the outside of K .

This theorem may be also proved analogously to Theorem 1.

REFERENCES

- [1] A. Alexiewicz, *Analiza funkcyjonalna*, Warszawa 1969.
- [2] J. P. Kahane, *Une remarque sur les séries de Rademacher et les domaines d'holomorphie*, Coll. Math. 19 (1968), 107—110.
- [3] P. Lelong, *Fonctions plurisousharmoniques et ensembles polaires dans les espaces vectoriels topologiques*, C.R. Acad. Sc. Paris, t. 267, 916—918, Série A.