\documentstyle[12pt,amsfonts,amssymb]{ticmi} \raggedbottom \textheight=225mm \textwidth=140mm \topmargin=0cm \oddsidemargin=0cm \evensidemargin=0cm \setcounter{page}{26} \pagestyle{Ticmihead} \def\nom{3, 1999} \def\comma{} \def\theequation{\arabic{equation}} \setcounter{equation}{0} \begin{document} \begin{center} ON A CYLINDRICAL BENDING OF A PRISMATIC SHELL WITH TWO CUSPED EDGES UNDER THE ACTION OF AN INCOMPRESSIBLE VISCOUS FLUID\footnote{This research was supported by a grant of Georgian President for the university} \vspace*{0.2cm} {\it N. Chinchaladze} \vspace*{0.1cm} {\it I.Vekua Institute of Applied Mathematics}\\ {\it I.Javakhishvili Tbilisi State University} \end{center} \vspace*{0.1cm} \par This paper deals with the proof of a uniqueness theorem of a problem of the interaction of the incompressible viscous fluid and of a thin elastic cusped plate of variable thickness (i.e., prismatic shell). \par Let the projection of a prismatic shell be an infinite strip $$ \Omega=\{(x_1,x_2):\;-\infty 0,\;\;\alpha,\beta\ge 0. $$ The edges $x_2=0$ and $x_2=\ell$ are cusped if $\alpha>0$ and $\beta>0$, respectively. \par The geometry of the elastic solid along thickness is taken into account in the coefficients of the following bending equation [1] \begin{equation} \frac{\partial^2}{\partial x_2^2}\left[x_2^2(\ell-x_2)^\beta\frac{\partial^2 w(x_2,t)} {\partial x_2^2}\right]=-\frac{2\rho^s h(x_2)}{D_0}\frac{\partial^2 w(x_2,t)} {\partial t^2}+\frac{q(x_2,t)}{D_0}, \end{equation} \par{\hspace{-0.6cm}}where $D(x_2)=D_0x_2^\alpha(\ell-x_2)^\beta,$ $D_0=const>0,$ is a flexural rigidity of the plate, $\rho^s$ is a density of solid, $w(x_2,t)\in C^4(\Omega)\cap C^2(t>0)\cap C^1(t\ge 0)$ is a deflection of the plate, $q(x_2,t)\in C(\bar\Omega\times\{t\ge 0\})$ is an intensivity of a lateral load. \par On $\partial\Omega$ the admissible boundary conditions of the plate theory should be given [1,2]. \par Let a flow of the viscous and incompressible fluid be independent of $x_1$ and parallel to $0x_2x_3$ (i.e., $v_1\equiv 0$) with the following conditions at infinity \begin{equation} \begin{array}{c} v_i(x_2,x_3,t)\vert_{x_3\rightarrow\infty}=v_{i\infty}(x_2,t), \;\;p(x_2,x_3,t)\vert_{x_3\rightarrow\infty}=p_\infty(x_2,t),\\ v_{i\infty}(x_2,t)\vert_{x_3\rightarrow-\infty}=O(1),\;\; p_{\infty}(x_2,t)\vert_{x_3\rightarrow-\infty}=O(1),\\ v_{i\infty}(x_2,t)\vert_{x_2^2\rightarrow\infty}=O(1),\;\; p_{\infty}(x_2,t)\vert_{x_2^2\rightarrow\infty}=O(1),\;\;i=2,3, \end{array} \end{equation} here $v:=(v_2,v_3)\in C^2(\Omega^f)\cap C^1(t>0)\cap C(t\ge 0)$ is a velocity vector of the fluid, $p(x_2,x_3,t)\in C^2(\Omega^f)\cap C(t\ge 0)$ is a pressure, $v_{2\infty}(x_2,t),$ $v_{3\infty}(x_2,t),$ and $p_\infty(x_2,t)\in C(\{]-\infty,0[\cap ]\ell,+\infty[\}\times\{t\ge 0\})$ are given functions. \par Because of the incompressibility \begin{equation} {\rm div}\;v(x_2,x_3,t)=0,\;\;(x_2,x_3)\in\Omega^f,\;\;t\ge 0, \end{equation} and (see [5], p.5) \begin{equation} \sigma_{ij}(x_2,x_3,t)=-p\delta_{ij}+\mu\left(\frac{\partial v_i}{\partial x_j}+ \frac{\partial v_j}{\partial x_i}\right), \end{equation} where $\sigma_{ij}$ is a stress tensor, $\mu$ is a coefficient of velosity, $\delta_{ij}$ is Kroneker delta. \par Further, if the plate is thin, we can assume that: \par $-$ the fluid occupies the whole space $R^3$ but the middle plane $\Omega$ of the plate, i.e., $\Omega^f=R^3\backslash\Omega$. \par $-$ values of a normal component of stress tensor, $\sigma_{n3}^f\left(x_2, {\mathop h\limits^{(\pm)}}(x_2),t\right)$ in the fluid part $\Omega^f$ are transferred at appropriate points of $\Omega$ from corresponding sides, i.e., \begin{equation} q(x_2,0,t)=\sigma^f_{33}(x_2,0_+,t)- \sigma^f_{33}(x_2,0_-,t),\;\; x_2\in[0,\ell],\;\;t\ge 0; \end{equation} \par $-$ transmission conditions for $v_i(x_2,x_3,t)$ $(i=2,3)$ have the forms as follows (see [3], [4]) \begin{equation} v_2(x_2,0,t)=0,\;\;\; v_3(x_2,0,t)=\frac{\partial w(x_2,t)}{\partial t}, \;\; x_2\in[0,\ell],\;\;t\ge 0. \end{equation} \par From (3) and (4) a normal component of the stress tensor is equal to \begin{equation} \sigma^f_{33}(x_2,x_3,t)= -p(x_2,x_3,t)-2\mu\frac{\partial v_2(x_2,x_3,t)}{\partial x_2}. \end{equation} \par By virtue of (6), from (7) we get $$ \sigma^f_{33}(x_2,0_\pm,t)=-p(x_2,0_\pm,t). $$ Hence, (5) has the following form \begin{equation} -p^+(x_2,t)+p^-(x_2,t)=q(x_2,t),\;\;x_2\in[0,\ell],\;\;t\ge 0. \end{equation} \par Let the motion of the fluid flow be sufficiently slow i.e., $v_i$ and $v_{i,j}$ $(i,j=2,3)$ be so small that linearization of Navier-Stokes equations (see [4,5,6,7]) be admissible. Hence, $$ \frac{\partial v_i}{\partial t}=-\frac{1}{\rho^f}{\rm grad} p +\nu\Delta v_i+F_i(x_2,x_3,t),\;\;\rho^f,\nu=const,\;i=2,3, \eqno{\rm(9_i)} $$ where $\rho^f$ is a density of fluid, $\nu=\mu/\rho$, $F:=(F_2,F_3)$ is a volume force. \setcounter{equation}{9} \par Let the initial conditions be \begin{equation} \begin{array}{l} v_i(x_2,x_3,0)=v_i^0(x_2,x_3),\;\; i=2,3,\;\;(x_2,x_3)\in \Omega^f,\\ \ \\\displaystyle w(x_2,0)=w^0(x_2),\;\;\frac{\partial w(x_2,t)}{\partial t}= v_3^0(x_2,0), \;\; x_2\in[0,\ell]. \end{array} \end{equation} \par {\bf Theorem 1.} The solution of the initial transmission boundary value problem (1), (3), $\rm(9_i)$ $(i=2,3)$, (10), (6), (8), (2) is unique. \par {\bf Proof.} Let the difference of two admissible solutions of the problem under consideration be $v_i(x_2,x_3,t)\;(i=2,3),$ $p(x_2,x_3,t),$ $q(x_2,t),$ $w(x_2,t).$ \par For these functions %$q(x_2,t)$, $w(x_2,t),$ $v_2(x_2,x_3,t)$, $v_3(x_2,x_3,t)$, %$p(x_2,x_3,t)$ we get equations $(1)$, $(3)$, and $$ \frac{\partial v_i}{\partial t}=-\frac{1}{\rho^f}{\rm grad} p +\nu\Delta v_i,\;\;i=2,3, \eqno{\rm(11_i)}, $$ under the following conditions at infinity \setcounter{equation}{12} $$ p(x_2,x_3,t)=0\;{\rm when}\; x_3\rightarrow\infty;\;\; p(x_2,x_3,t)=O(1) \;{\rm when}\; x_2^2+x_3^2\rightarrow\infty,\eqno{\rm(12_1)} $$ $$ v_i(x_2,x_3,t)=0\;{\rm when}\;\; x_3\rightarrow\infty; $$ $$ v_i(x_2,x_3,t)=O(1)\;{\rm when}\; x_2^2+x_3^2\rightarrow\infty,\;i=2,3,\eqno{\rm(12_i)} $$ initial conditions \begin{equation} \begin{array}{l} v_i(x_2,x_3,0)=0\;(i=2,3),\;\; p(x_2,x_3,0)=0,\;\;(x_2,x_3)\in\Omega^f,\\ \displaystyle q(x_2,0)=0,\; w(x_2,0)=0\;\;w,_t(x_2,0)=0,\;\;x_2\in[0,\ell], \end{array} \end{equation} and transmission conditions (6), (8). \par After differentiation of $\rm(11_i)$ with respect to $x_i$ and termwise summation, in virtue of (3), we obtain that $p(x_2,x_3,t)$ is a harmonic function, i.e., \begin{equation} \Delta p(x_2,x_3,t)=0, \end{equation} where $\Delta=\frac{\partial^2}{\partial x_2^2}+ \frac{\partial^2}{\partial x_3^2}$ is a Laplace operator. \par The solution of the problem (14), (8), $\rm(12_1),$ has the following form (see [8]) $$ p(x_2,x_3,t)=-\frac{1}{2\omega\pi}{\mathop\int\limits_0^\ell} \frac{q(\xi,t)x_3}{(\xi-x_2)^2+x_3^2}d\xi; $$ \par $v_i(x_2,x_3,t)$ $(i=2,3)$ can be written as follows $$ v_i(x_2,x_3,t)=-\frac{1}{\rho^f}{\mathop\int\limits_0^t}p,_{i}(x_2,x_3,\tau) d\tau+\phi_i(x_2,x_3,t),\eqno{(15_i)} $$ where the first term is a particular solution of $\rm (11_i)$, and $\phi_i(x_2,x_3,t)$ $(i=2,3)$, taking into account $\rm (11_i)$, (13), (3), (12), (6), are solutions of the problems $$ \phi_{i,t}-\nu\Delta\phi_i=0, $$ \setcounter{equation}{16} $$ \phi_i(x_2,x_3,0)=0; \;\;\phi_i\vert_{x_3\rightarrow\infty}=0, \;\;\phi_i\vert_{x_2^2+x_3^2\rightarrow\infty}=O(1),\eqno{\rm(16_i)} $$ $$ \phi_2(x_2,0,t)=0,\; \phi_3(x_2,0,t)=w,_t(x_2,t)+ \frac{1}{\rho^f}{\mathop\int\limits_0^t}p,_{3}(x_2,0,\tau) d\tau,\;x_2\in[0,\ell], $$ \begin{equation} \phi_{2,2}(x_2,x_3,t)+\phi_{3,3}(x_2,x_3,t)=0. \end{equation} \par After differentiating $\rm (15_i)$ with respect to $x_j$ $(i,j=2,3,$ $i\ne j)$ and using (14) it is easy to show that there exists the function $\psi(x_2,x_3,t)$ given by the expression $$ \psi,_i(x_2,x_3,t)=v_i(x_2,x_3,t)-\phi_i(x_2,x_3,t),\;\;i=2,3.\eqno{\rm(18_i)} $$ By virtue of $\rm(11_i)$ and (17), we can find $\psi(x_2,x_3,t)$ from the the following problem \setcounter{equation}{18} \begin{equation} \Delta\psi=0,\;\;\psi,_2(x_2,0,t)=0,\;\;\psi,_2\vert_{x_2^2+x_3^2\rightarrow \infty}=O(1). \end{equation} (19) means (see [8]) that $\psi,_2(x_2,x_3,t)=0$. Therefore $\psi,_{33}(x_2,x_3,t)\equiv 0,$ and $$ \psi(x_2,x_3,t)=c_1(t)x_3+c_2(t). $$ Taking into account $\rm(18_3),$ $\rm(12_3),$ and $\rm(16_3),$ we get $$ \psi,_3=c_1(t)=v_3-\psi_3=0,\;\;{\rm when}\;\;x_3\rightarrow\infty. $$ Finally, we obtain $\psi,_3\equiv 0$, \begin{equation} v_i(x_2,x_3,t)-\phi_i(x_2,x_3,t)=0,\;\;i=2,3. \end{equation} \par By virtue of $\rm (15_i)$, (20), and $p(x_2,x_3,t)$ is a function only of $t$. On the other hand (see $\rm(12_i)$) this function is equal to zero at infinity, i.e., \begin{equation} p(x_2,x_3,t)=A(t)=0. \end{equation} \par Further, the transmission condition (8) and equation (1) mean that \begin{equation} q(x_2,t)=0,\;\; w(x_2,t)=0. \end{equation} \par In view of (21), (22), from $\rm (11_i)$ and (6) we obtain $$ v_{i,t}(x_2,x_3,t)-\nu\Delta v_i(x_2,x_3,t)=0,\;\;i=2,3.\eqno{\rm(23_i)} $$ \setcounter{equation}{23} \begin{equation} v_i(x_2,0,t)=0,\;\;x_2\in[0,\ell],\;\;i=2,3. \end{equation} It is easy to show that the problem (3), $\rm (23_i)$, (24), (13), (12) has only trivial solution, i.e., $v_i\equiv 0$, $i=2,3.$ \newpage \footnotesize \begin{center} {\bf R e f e r e n c e s} \vspace*{0.2cm} \end{center} \par [1] Chinchaladze N., Cylindrical Bending of the Prismatic Shell with Two Sharp Edges in Case of a Strip. Reports of Enlarged Session of the Seminar of I.Vekua Institute of Applied Mathematics, 10, $N^{_{\underline 0}}$ 1, 1995, 21-23. \par [2] Jaiani, G.V., Elastic Bodies with Non-smooth Boundaries-Cusped Plates and Shells. ZAMM, 76, Suppl. 2, 1996, 117-120. \par [3] Chinchaladze N., Jaiani G., On a Cylindrical Bending of a Prismatic Shell with Two cusped Edges Under Action of an Ideal Fluid. Bulletin of TICMI, 2, 1998, 30-34.\\ (Web-site:http//www.viam.hepi.edu.ge/Others/TICMI) \par [4] Wollmir A., Shells on the Flow of Fluid and Gas. Problems of Hydro-elasticity. Moscow, 1981, (Russian). \par [5] Duutray R., Lions J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Vol.1, Springer-Verlag, Berlin, Heidelber, New-York, London, Paris, Tokyo, Hong Kong, 1990. \par [6] Loitsianskii L., Mechanics of Fluid and Gas. Moscow, 1960, (Russian). \par [7] Solonikov V.A., On Quasistationary Approximation in the Problem of Motion of a Capillary Drop. Preprint 7/98, Pr\'e-publica\c{c}\v{o}es de Matem\'atica, Universidade de Lisboa, 1998. \par [8] Muskhelishvili N., Singular Integral Equations. Noordhoff, 1953. \end{document} .