\documentstyle[12pt,amsfonts,amssymb,amsbsy]{book} \raggedbottom \textheight=225mm \textwidth=140mm \topmargin=0cm \oddsidemargin=0cm \evensidemargin=0cm \def\theequation{\arabic{equation}} \setcounter{equation}{0} \begin{document} \setcounter{page}{49} \newcommand{\de}{\partial} \newcommand{\fr}{\frac} \newcommand{\ro}{\varrho} \newcommand{\la}{\lambda} \newcommand{\al}{\alpha} \newcommand{\of}{\left\{\right.} \newcommand{\cf}{\left.\right\}} \newcommand{\oc}{\left(} \newcommand{\cc}{\right)} \newcommand{\lb}{\lambda} \newcommand{\Lb}{\Lambda} \newcommand{\gm}{\gamma} \newcommand{\bt}{\beta} \newcommand{\Om}{\Omega} \newcommand{\om}{\omega} \newcommand{\Gm}{\Gamma} \newcommand{\Dl}{\Delta} \newcommand{\Tht}{\Theta} \newcommand{\dl}{\delta} \newcommand{\bac}{\backslash} \newcommand{\tht}{\theta} \newcommand{\sg}{\sigma} \newcommand{\far}{\forall} \newcommand{\var}{\varnothing} \newcommand{\vf}{\varphi} \newcommand{\ve}{\varepsilon} \newcommand{\os}{\overset} \newcommand{\ov}{\overline} \newcommand{\wt}{\widetilde} \newcommand{\nd}{\noindent} \newcommand{\pa}{\partial} \newcommand{\lra}{\Leftrightarrow} \newcommand{\vn}{\varnothing} \newcommand{\sbs}{\subset} \newcommand{\sps}{\supset} \newcommand{\Rt}{\Rightarrow} \newcommand{\rt}{\rightarrow} \newcommand{\ale}{\aleph} \newcommand{\const}{\operatorname{\const}} \pagestyle{viamhead} \def\author{\it Bulletin of TICMI} \def\thema{\it Volume 2, 1998} \def\comma{} \def\theequation{\arabic{equation}} \setcounter{equation}{0} \newcommand{\nc}{\newcommand} \nc{\eps}{\varepsilon} %\nc{\ov}{\overline} \def\Qalph{\mathop{Q_\alpha}} \def\Qm{\mathop{Q_1}} \def\Qn{\mathop{Q_2}} \def\Fk{\mathop{F_{ij,1}}} \def\Fkn{\mathop{F_{ij,2}}} \begin{center} {TO DESIGN OF BENDING PROBLEMS WITH BOUNDARY LAYERS FOR ELASTIC PLATES} \vspace*{0.3cm} {\it A. Muradova} \vspace*{0.3cm} {\it I. Javakhishvili Tbilisi State University} \end{center} \vspace*{0.3cm} \par Let an elastic plate be isotropic and homogenuous, then equations with respect to a deflection and shearing forces are represented as a split system of a biharmonic equations and two Helmholtz' equations (see e.g. [1]). Consider a case, when boundary conditions of the problem for the deflection and the shearing forces are also split. \par Thus, assume that for the deflection we have the following problem \begin{equation} D\Delta^2w(x,y)=f(x,y), \end{equation} \begin{equation} w(x,y)\big|_{\partial G}=\frac{\partial}{\partial n}w(x,y)\bigg|_{\partial G}=0, \end{equation} where $(x,y)\in G=(-1,1)$x$(-1,1),$ $\big\{\partial G:\;|x|=1,\;|y|=1\big\},$ $D$ is cylindrical rigidity, and if we change the independent variables $x,\;y,$ for the shearing forces we have the problems: $$\eps\Delta Q_\alpha(\xi,\eta)-Q_\alpha(\xi,\eta)=F_\alpha(\xi,\eta),\;\;\; 0<\xi,\eta<1,\;\;\;\alpha=1,2,\eqno(3_\alpha)$$ $$\begin{array}{c} \displaystyle \partial_1Q_1(\xi,\eta)\big\vert_{\xi=0}=\mu_{01}(\eta),\;\;\; \partial_1Q_1(\xi,\eta)\big\vert_{\xi=1}=\mu_{11}(\eta),\\ \\ [-0.3cm] Q_1(\xi,0)=\nu_{01}(\xi),\;\;\;Q_1(\xi,1)=\nu_{11}(\xi), \end{array}\eqno(4_1)$$ $$\begin{array}{c} \displaystyle Q_2(0,\eta)=\mu_{02}(\eta),\;\;\; Q_2(1,\eta)=\mu_{12}(\eta),\\ \\ [-0.3cm] \partial_2Q_2(\xi,\eta)\big\vert_{\eta=0}=\nu_{02}(\xi), \;\;\;\partial_2Q_2(\xi,\eta)\big\vert_{\eta=1}=\nu_{12}(\xi), \end{array}\eqno(4_2)$$ where $\displaystyle \eps=\frac{h^2}{12}(1+2\gamma),$ $2h$ is a thickness of the plate, $\gamma$ is an arbitrary control parameter, $\nu$ is a coefficient of rigidity, $\partial_1=\partial/\partial\xi,\; \partial_2=\partial/\partial\eta.$ \par For solving (1), (2) we use the projective method by [2]. Then the solution of (1), (2) has the following form: $$w(x,y)=\sum\limits_{i,j=1}^{m}w^{ij}\chi^2P_i(x)\chi^2P_j(y),$$ where $\chi^2P_i(x),\;\chi^2P_j(y)$ are second order divided differences with respect to indeces from the Legendre polynomials: \par For solving (3$_\alpha$), (4$_\alpha$) an alternating direction iterative scheme is used, which is a modification of the continual analogue of the alternating direction method [3] for discrete version. This scheme has the following form: $$\begin{array}{c} \displaystyle \hspace*{-3.7cm} (r+1)\Qalph\limits^{(k+\frac{1}{2})}(\xi,\eta_j)+\eps A_1\Qalph\limits^{(k+\frac{1}{2})}(\xi,\eta)\bigg|_{\eta=\eta_j}=\\ \\ [-0.3cm] \displaystyle \hspace*{3cm}=r\Qalph\limits^{(k)}(\xi,\eta_j)-\eps A_2\Qalph\limits^{(k)}(\xi,\eta)\bigg|_{\eta=\eta_j}- F_\alpha(\xi,\eta_j), \end{array}\eqno(5_\alpha)$$ $$\partial_1\Qm\limits^{(k+\frac{1}{2})}(\xi,\eta)\big|_{\xi=0,\;\eta=\eta_j}=\mu_{01}(\eta_j),\;\;\; \partial_1\Qm\limits^{(k+\frac{1}{2})}(\xi,\eta)\big|_{\xi=1,\;\eta=\eta_j}=\mu_{11}(\eta_j), \eqno(6_1)$$ $$\Qn\limits^{(k+\frac{1}{2})}(0,\eta_j)=\mu_{02}(\eta_j),\;\;\; \Qn\limits^{(k+\frac{1}{2})}(1,\eta_j)=\mu_{12}(\eta_j),\;\;\; j=\ov{2,n},\eqno(6_2)$$ $$\begin{array}{c} \displaystyle \hspace*{-3.7cm} (r+1)\Qalph\limits^{(k+1)}(\xi_i,\eta)+\eps A_2\Qalph\limits^{(k+1)}(\xi,\eta)\bigg|_{\xi=\xi_i}=\\ \\ [-0.3cm] \displaystyle \hspace*{3cm}=r\Qalph\limits^{(k+\frac{1}{2})}(\xi_i,\eta)- \eps A_1\Qalph\limits^{(k+\frac{1}{2})}(\xi,\eta)\bigg|_{\xi=\xi_i}- F_\alpha(\xi_i,\eta), \end{array}\eqno(7_\alpha)$$ $$\Qm\limits^{(k+1)}(\xi_i,0)=\nu_{01}(\xi_i),\;\;\; \Qm\limits^{(k+1)}(\xi_i,1)=\nu_{11}(\xi_i),\eqno(8_1)$$ $$\partial_2\Qn\limits^{(k+\frac{1}{2})}(\xi,\eta)\big|_{\xi=\xi_i,\eta=0}=\nu_{02}(\xi_i),\;\;\; \partial_2\Qn\limits^{(k+\frac{1}{2})}(\xi,\eta)\big|_{\xi=\xi_i,\eta=1}=\nu_{12}(\xi_i), \;\;\;i=\ov{2,n},\;(8_2)$$ where $A_1=-\partial^2/\partial\xi^2,\;A_2=-\partial^2/\partial\eta^2,\;r$ is an iterative parameter. \par The problems (5$_\alpha$), (6$_\alpha$) and (7$_\alpha$), (8$_\alpha$) are the problems with boundary layer for second order ordinary differential equations. For solving these problems we apply a generalized finite difference method and (Q)-formulas [3]. The iterative schemes have the form: $$ \hspace*{-3.7cm} (r+1)(B_{1,h}\Qalph\limits^{(k+\frac{1}{2})})_{ij}+ \eps(A_{\alpha,01,h}\Qalph\limits^{(k+\frac{1}{2})})_{ij}= r(B_{1,h}\Qalph\limits^{(k)})_{ij}-\eqno(9_\alpha) $$ $$\begin{array}{c} \displaystyle -\eps(B_{1,h}B_{2,h}^{-1}A_{\alpha,02,h}\Qalph\limits^{(k)})_{ij} -\eps(B_{1,h}B_{2,h}^{-1}F_{\alpha}^2)_{ij}-(B_{1,h}F_\alpha)_{ij}+F_{\alpha,ij}^1, \;i=\ov{n_1,n}, \end{array}$$ $$\partial_1\mathop{Q_{1,1j}}\limits^{(k+\frac{1}{2})\ \ \ }=\mu_{01}(\eta_j),\;\;\; \partial_1\mathop{Q_{1,n+1,j}}\limits^{(k+\frac{1}{2})\ \ \ \ \ \ }=\mu_{11}(\eta_j), \eqno(10_1)$$ $$\mathop{Q_{2,1j}}\limits^{(k+1)\ \ \ }=\mu_{02}(\eta_j),\;\;\; \mathop{Q_{2,n+1,j}}\limits^{(k+1)\ \ \ \ \ \ }=\mu_{12}(\eta_j), \;\; j=\ov{2,n}, \eqno(10_2)$$ $$ \displaystyle \hspace*{-3.7cm} (r+1)(B_{2,h}\Qalph\limits^{(k+1)})_{ij}+ \eps(A_{\alpha,02,h}\Qalph\limits^{(k+1)})_{ij}= r(B_{2,h}\Qalph\limits^{(k+\frac{1}{2})})_{ij}- \eqno(11_\alpha)$$ $$\begin{array}{c} \displaystyle -\eps(B_{2,h}B_{1,h}^{-1}A_{\alpha,01,h}\Qalph\limits^{(k+\frac{1}{2})})_{ij} -\eps(B_{2,h}B_{1,h}^{-1}F_{\alpha}^1)_{ij}-(B_{2,h}F_\alpha)_{ij}+F_{\alpha,ij}^2, \;\;j=\ov{n_2,n}, \end{array}$$ $$\mathop{Q_{1,i1}}\limits^{(k+1)\ \ \ }=\nu_{01}(\xi_i),\;\;\; \mathop{Q_{1,i,n+1}}\limits^{(k+1)\ \ \ \ \ \ }=\nu_{11}(\xi_i),\eqno(12_1)$$ $$\partial_2\mathop{Q_{2,i1}}\limits^{(k+\frac{1}{2})\ \ \ }=\nu_{02}(\xi_i),\;\;\; \partial_2\mathop{Q_{2,i,n+1}}\limits^{(k+\frac{1}{2})\ \ \ \ \ \ }=\nu_{12}(\xi_i), \eqno(12_2)$$ \hspace*{10cm}$i=\ov{2,n}.$\\ here $A_{\alpha,01,h},\;A_{\alpha,02,h},$ $B_{1,h},\;B_{2,h},$ $F_{\alpha,ij}^1,\;F_{\alpha,ij}^2$ ($F_{1,ij}^1=0,\;F_{2,ij}^2=0$) are defined by the formulas of the generalized finite difference method and (Q) formulas; $n_1=1,$ $n_2=2$ for $\alpha=1$ and $n_1=2$ $n_2=1$ for $\alpha=2.$ \par {\bf Theorem.} {\it If the operators $B_{1,h}^{-1}A_{\alpha,01,h},\; B_{2,h}^{-1}A_{\alpha,02,h}$ are positive definite, then the iterative processes {\rm(9$_\alpha$), (10$_\alpha$)} and {\rm(11$_\alpha$)}, {\rm(12$_\alpha$)} converge for $r\ge 0$ and any $\Qalph\limits^{(0)},$ $A_2\Qalph\limits^{(0)}.$} \vskip 0.3cm Acknowledgment. The work is written under the supervision of Professor T. Vashakmadze, the author is grateful to him. \vspace*{0.4cm} \footnotesize \begin{center} {\bf R e f e r e n c e s} \vspace*{0.2cm} \end{center} \par[1] Vashakmadze T.S., Some Problems of Mathematical Theory of Anysotropic Elastic Plates. Tbilisi, 1986. (in Russian). \par[2] Vashakmadze T.S., On the Application of One Numerical Process in the Dirichlet Problem of Theory of Shells. Weimar, Wissensch. Z. Hochsch Arch. Baumwesen, N2, 1972, pp. 228-231 (In Russian). \par[3] Vashakmadze T.S., Method of Generalized Factorization and its Application to Numerical Solution Some Problems Mathem. Physics., Proceedings of Symp. Continuum Mechanics and Related Problems of Analysis. Tbilisi: Metsniereba, v. 1, 1972, pp. 36-45. (in Russian). \end{document} .