\documentstyle[12pt,amsfonts,amssymb,amsbsy]{book} \raggedbottom \textheight=225mm \textwidth=140mm \topmargin=0cm \oddsidemargin=0cm \evensidemargin=0cm \def\theequation{\arabic{equation}} \setcounter{equation}{0} \begin{document} \setcounter{page}{34} \begin{center} ON SOME GENERALISATION OF NON-LOCAL BOUNDARY VALUE PROBLEMS FOR ELLIPTIC EQUATIONS \end{center} \vspace*{0.3cm} \centerline{\it{N. Gordeziani, E. Gordeziani}} \vspace*{0.3cm} \centerline{\it I. Javakhishvili Tbilisi State University} \vspace*{0.3cm} \par In the present work there are considered the following problems: \par {\bf Problem 1.} Consider a bounded domain $\Omega$, with the boundary $\Gamma$. Let $\Omega_i,(i=\overline{1,m})$ be domains with boundaries $\Gamma_i$, such that each of the following domains is placed strictly inside of the proceeding ones. In addition, $\Gamma_i$ represents a diffeomorfic image of $\Gamma, X^{(i)}\in\Gamma_i, X\in\Gamma, I_i(X)=X^{(i)}$. $\Gamma$ and $\Gamma_i$ are Liapunov surfaces. \par Let $L$ be uniform elliptic operator of the following type: $$ L\equiv\sum\limits^n_{i,k=1}a_{i,k}(x)\frac{\partial^2}{\partial x_i \partial x_k}+\sum\limits^n_{i=1}b_i(x)\frac{\partial}{\partial x_i}+c(x), $$ where $a_{i,k}(x), b_i(x), c(x) (c(x)\le 0)$ are prescribed functions. \par We have to find the regular solution of the following equation: \begin{equation} Lu(x)=F(x),\;\; x\in\Omega, \end{equation} satisfying the following non-local conditions \begin{equation} u(X)=\sum\limits^m_{i=1}q_iu(X^{(i)})+\Phi (X), \end{equation} where $\Phi, F$ are prescribed functions, $F$ is defined on $\Omega, \Phi$ - on $\Gamma, q_i(i=\overline{1,m})$ are prescribed constants, $\sum\limits^m_{i=1}q_i=q_0.$ \par We assume, that $a_{i,k}, b_i, c, F$ and $\Phi$ are such, that there exists the regular solution of Dirichlet problem for the equation (1). \par In order to solve the problem there was suggested the following iteration procedure: \begin{equation} \begin{array}{l} Lu^{(k+1)}(x)=F(x),\\ u^{k+1}(X)=\sum\limits^m_{i=1}q_iu{(k)}(X^{(i)})+\Phi(X),\;\; k=0,1,...\\ u^{(0)}(X^{(0)})=0. \end{array} \end{equation} \par {\bf Theorem 1.} {\it If $\bigg|\sum\limits^m_{i=1}q_i\bigg|=q_0<1$, in addition, either all $q_i\le 0$ or $q_i>0$, then there exists the unique regular solution of the problem {\rm (1)-(2), (3)} iteration procedure converges with speed of geometrical progression and the following estimation is valid: $\max\limits_{\bar\Omega}|(x)-u^{(k)}(x)|\le cq_0^k, \forall k$, where $c$ is the constant, which does not depend on $u(x)$ and $u^{(k)}(x)$.} \par {\bf Problem 2.} In this case domain $\Omega$ is kernel with $\Gamma$ boundary and $a$ radius. Respectively, $\Omega_i(i=\overline{0,m})$ are concentrated kernels with $\Gamma_i$ boundaries and $a_i$ radiuses, $a>a_0>a_1>...>a_m>0.$ The centre of coordinate system is placed in the centre of kernels. Here we bring in the prescribed functions: $F(r,\theta,\phi)\in C^1(\Omega)$ and $f(\theta,\phi)\in C^2(\Gamma)$. \par We have to find the regular solution of the equation \begin{equation} \Delta u(x)=0, \;\; x\in\Omega, \end{equation} satisfying the followig generalisation of before known non-local boundary conditions, \begin{equation} \alpha\frac{\partial u}{\partial r}\bigg|_{r=a}+\beta u\bigg|_{r=a}= \sum\limits^m_{i-0}\alpha_iu\bigg|_{r=a_i}+\frac{\gamma}{a-a_0} \int\limits^a_{a_0}udr+f, \end{equation} where $u(x)\in C^2(\Omega)\bigcap C^1(\bar\Omega)$, \ $\Delta$ is the Laplace operator written in spherical coordinates, \ $\alpha,\beta,\alpha_i$ and $\gamma$ are prescribed constants. \par {\bf Theorem 2.} {\it If $\beta\ge 0$ and $\beta>\sum\limits^m_{i=0}\alpha_i+\gamma$, then there exists the unique regular solution of the problem {\rm(4)-(5)}, it is unique and can be written in spherical functions: $$ \begin{array}{l} u(x)=\frac{1}{\beta-\sum\limits_0^m\alpha_i-\gamma}Y_0+ \sum\limits^{\infty}_{n=1}\left(\frac{r}{a}\right)^n \left[\alpha\frac{n}{a}+\beta-\sum\limits^m_0\alpha_i \left(\frac{a_i}{a}\right)^n-\right.\\ \left.-\frac{\gamma}{(n+1)(a-a_0)} \left[a-a_0\left(\frac{a_0}{a}\right)^n\right]\right]^{-1}Y_n, \end{array} $$ if $\beta=\sum\limits_{n=1}^m\alpha_i-\gamma$ and $\int\limits_0^{2\pi} \int\limits_0^\pi f\sin\theta d\theta d\varphi=0,$ solution is defined with precision of any constsnt, $$ \begin{array}{l} u(x)=\sum\limits^{\infty}_{n=1}\left(\frac{r}{a}\right)^n \left[\alpha\frac{n}{a}+\beta-\sum\limits^m_0\alpha_i \left(\frac{a_i}{a}\right)^n-\right.\\ \left.\frac{\gamma}{(n+1)(a-a_0)}\left[a-a_0\left(\frac{a_0}{a}\right)^n \right]\right]^{-1}Y_n+c, \end{array} $$ where $c$ is an arbitrary constant, $Y_n(\theta,\varphi)$ is a spherical harmonic which can be expressed by Legandre's goint polynomials and Fourier coefficients.} \par {\bf Problem 3.} In this case domain $\Omega$ is cylinder, $\Gamma^{(1)}_0$ and $\Gamma^{(2)}_0$ are upper side and bottom boundaries, $Y$ is a side boundary, with $a$ radius. Respectively, $\Omega_i$ are consentrated cylinders, with $a_i$ radiuses $\Gamma_i$ side boundaries; The heights of these cylinders equal to each other, it is $l$. \par We have to find the regular solution of Laplace equation (4), satisfying (5) non-local condition, in addition \begin{equation} u\bigg|_{\Gamma^{(1)}_0}=u\bigg|_{\Gamma^{(2)}_0}=0. \end{equation} \par {\bf Theorem 3.} {\it If $\beta\ge 0$ and $\beta>\sum\limits^m_0\alpha_i+\gamma$, then there exists the unique regular solution of the problem {\rm (4)-(5)-(6)} and it can be expressed by Bessell functions: $$ \begin{array}{l} \displaystyle u(x)=\sum\limits^\infty_{n=0}\sum\limits^\infty_{k=1} \left[\frac{\alpha}{2}\frac{I_{n-1}\left(\frac{\pi k}{l}a\right)- I_2{n+1}\left(\frac{\pi k}{l}a\right)}{I_n\left(\frac{\pi k}{l}a\right)}+ \beta-\right.\\ \\ \ \displaystyle \left.-\sum\limits_{i=0}^m\alpha_i\frac{I_n(a_i)}{I_n(a)}-\gamma \frac{I_n^0\left(\frac{\pi k}{l}(a-a_0)\right)}{I_n(a)}\right]^{-1}Y_{nk}, \end{array} $$ where $$\displaystyle I_n^0\left(\frac{\pi k}{l}(a-a_0)\right)= \sum\limits_{\nu=0}^{\infty}\frac{1}{\gamma(\nu+1)\gamma(\nu+n+1)(2\nu+n+1)} \left(\frac{\pi k}{l}(a-a_0)\right)^{2\nu+n},$$ $Y_{nk}$ are expressed by Fourier coeficients, $I_n$ are modified functions of Bessell. } \end{document} .