%% if you are submitting an initial manuscript then you should have submission as an option here %% if you are submitting a revised manuscript then you should have revision as an option here %% otherwise options taken by the article class will be accepted \documentclass[finalversion]{FPSAC2024} \articlenumber{72} %% but DO NOT pass any options (or change anything else anywhere) which alters page size / layout / font size etc %% note that the class file already loads {amsmath, amsthm, amssymb} % AMS style packages \usepackage{amsmath} \usepackage{enumitem} \usepackage{amssymb,amsfonts,stmaryrd,mathrsfs} \usepackage{latexsym,amsthm,mathtools,bbm} \usepackage{subcaption} \usepackage{hyperref} \usepackage{footmisc} \usepackage{algorithm} \usepackage{algpseudocode} \algrenewcommand\algorithmicrequire{\textbf{Input:}} \algrenewcommand\algorithmicensure{\textbf{Output:}} % Standard useful packages % %\usepackage[shortlabels]{enumitem} %\usepackage{graphicx} %\usepackage{hyperref} %\usepackage{listings} %\usepackage{mathrsfs} %\usepackage{mathtools} %\usepackage{multicol} %%\usepackage{shuffle} %\usepackage{stmaryrd} % Tikz package and libraries \usepackage{tikz} \usepackage{tikz-cd} %\usepackage{tikzducks} \usetikzlibrary{arrows,backgrounds,chains,decorations.pathreplacing,patterns,shapes, calc, positioning} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{manualtheoreminner}{Theorem} \newenvironment{manualtheorem}[1]{% \renewcommand\themanualtheoreminner{#1}% \manualtheoreminner }{\endmanualtheoreminner} \newtheorem{manualconjinner}{Conjecture} \newenvironment{manualconj}[1]{% \renewcommand\themanualconjinner{#1}% \manualconjinner }{\endmanualconjinner} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{definitions}[theorem]{Definitions} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} % Functions \newcommand{\area}{\mathsf{area}} \newcommand{\dinv}{\mathsf{dinv}} \newcommand{\Dinv}{\mathsf{Dinv}} \newcommand{\inv}{\mathsf{inv}} \newcommand{\Inv}{\mathsf{Inv}} \newcommand{\pmaj}{\mathsf{pmaj}} \newcommand{\maj}{\mathsf{maj}} \newcommand{\ides}{\mathsf{ides}} \newcommand{\dcomp}{\mathsf{dcomp}} \newcommand{\comp}{\mathsf{comp}} \newcommand{\st}{\mathsf{st}} \newcommand{\set}{\mathsf{set}} \newcommand{\asc}{\mathsf{asc}} \newcommand{\des}{\mathsf{des}} \newcommand{\LLT}{\mathrm{LLT}} % sets \newcommand{\D}{\mathsf{D}} % Dyck paths (new) \newcommand{\W}{\mathsf{W}} % Labellings \newcommand{\LD}{\mathsf{LD}} % labelled Dyck paths \newcommand{\ISF}{\mathsf{ISF}} \newcommand{\wt}{\mathsf{wt}} \newcommand{\cN}{\mathcal N} \newcommand{\cM}{\mathcal M} \newcommand{\bN}{\mathbb N} \newcommand{\bZ}{\mathbb Z} \newcommand{\e}{\underline{e}} \newcommand{\PPi}{\mathbf{\Pi}} % q-binomials \newcommand{\qbinom}[2]{\genfrac{[}{]}{0pt}{}{#1}{#2}} \newcommand{\dqbinom}[2]{\genfrac{[}{]}{0pt}{0}{#1}{#2}} \usepackage{lipsum} \DeclareMathOperator{\ric}{Ric} \DeclareMathOperator{\Ric}{Ric} %% define your title in the usual way \title{Chromatic functions, interval orders, and increasing forests} %% define your authors in the usual way %% use \addressmark{1}, \addressmark{2} etc for the institutions, and use \thanks{} for contact details \author{Michele D'Adderio\thanks{\href{mailto:michele.dadderio@unipi.it}{michele.dadderio@unipi.it}}\addressmark{1}, Roberto Riccardi\thanks{\href{mailto:roberto.riccardi@sns.it}{roberto.riccardi@sns.it}}\addressmark{2}, \and Viola Siconolfi\thanks{\href{mailto:siconolf@mat.uniroma2.it}{siconolf@mat.uniroma2.it}}\addressmark{3}} %% then use \addressmark to match authors to institutions here \address{ \addressmark{1}Universit\`a di Pisa, Dipartimento di Matematica, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy\\ \addressmark{2}Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy\\ \addressmark{3}Politecnico di Bari, Dipartimento di Meccanica, Matematica e Managment, Via Orabona 4, 70125 Bari, Italy } %% put the date of submission here \received{} %% leave this blank until submitting a revised version %\revised{} %% put your English abstract here, or comment this out if you don't have one yet %% please don't use custom commands in your abstract / resume, as these will be displayed online %% likewise for citations -- please don't use \cite, and instead write out your citation as something like (author year) \abstract{ The chromatic quasisymmetric functions (csf) of Shareshian and Wachs associated to unit interval orders have attracted a lot of interest since their introduction in 2016, both in combinatorics and geometry, because of their relation to the famous Stanley-Stembridge conjecture (1993) and to the topology of Hessenberg varieties, respectively. In the present work we study the csf associated to the larger class of interval orders with no restriction on the length of the intervals. Inspired by an article of Abreu and Nigro, we show that these csf are weighted sums of certain quasisymmetric functions associated to the increasing spanning forests of the associated incomparability graphs. Furthermore, we define quasisymmetric functions that include the unicellular LLT symmetric functions and generalize an identity due to Carlsson and Mellit. Finally we conjecture a formula giving their expansion in the type 1 power sum quasisymmetric functions which should extend a theorem of Athanasiadis. } %% put your French abstract here, or comment this out if you don't have one %\resume{prova di abstract francese???} %% put your keywords here, or comment this out if you don't have them yet \keywords{Chromatic quasisymmetric functions, LLT quasisymmetric functions, increasing spanning forests} %% you can include your bibliography however you want, but using an external .bib file is STRONGLY RECOMMENDED and will make the editor's life much easier %% regardless of how you do it, please use numerical citations, ie. [xx, yy] in the text %% this sample uses biblatex, which (among other things) takes care of URLs in a more flexible way than bibtex %% but you can use bibtex if you want \usepackage[backend=bibtex]{biblatex} \addbibresource{biblebib.bib} %% note the \printbibliography command at the end of the file which goes with these biblatex commands \begin{document} \maketitle %% note that you DO NOT have to put your abstract here -- it is generated by \maketitle and the \abstract and \resume commands above \section{Introduction} In \cite{Shareshian_Wachs_Advances} Shareshian and Wachs introduced the \emph{chromatic quasisymmetric function} $\chi_G[X;q]$ associated to every graph $G$ whose vertices are totally ordered, as a sum over proper colorings of $G$ of suitable monomials. At $q=1$ the series $\chi_G[X;q]$ reduces to the well-known chromatic symmetric function $\chi_G[X;1]=\chi_G(x)$ introduced by Stanley in \cite{Stanley_Chrom_Sym}. A famous conjecture of Stanley and Stembridge (\cite[Conjecture~5.1]{Stanley_Chrom_Sym}, \cite[Conjecture~5.5]{Stanley_Stembridge}) states that if $G$ is the incomparability graph of a $(\mathbf{3}+\mathbf{1})$-free poset, then $\chi_G[X;1]$ is $e$-positive, i.e.\ its expansion in the elementary symmetric functions has coefficients in $\mathbb{N}$. Shareshian and Wachs showed (cf.\ \cite[Theorem~4.5]{Shareshian_Wachs_Advances}) that if $G$ is the incomparability graph of a poset that is both $(\mathbf{3}+\mathbf{1})$-free and $(\mathbf{2}+\mathbf{2})$-free, then $\chi_G[X;q]$ is a symmetric function, and they conjecture that it is $e$-positive, i.e.\ its expansion in the elementary symmetric functions has coefficients in $\mathbb{N}[q]$. Thanks to a result of Guay-Paquet \cite{guaypaquet_modular_law}, it is known that the Shareshian-Wachs conjecture implies the Stanley-Stembridge conjecture. The former problem attracted a lot of attention recently: see e.g.\ \cite{Huh_Nam_Yoo,Abreu_Nigro_Modular_Law,Skandera,Cho_Hong,Nadeau_Tewari_Downup,Colmenarejo_Morales_Panova}. The posets that are $(\mathbf{3}+\mathbf{1})$-free and $(\mathbf{2}+\mathbf{2})$-free are precisely the \emph{unit interval orders} (see \cite{Scott_Suppes}), whose elements are intervals in $\mathbb{R}$ of the same length, and an interval $a$ is smaller than an interval $b$ if all the points of $a$ are strictly smaller than all the points of $b$. If in such a poset we order the intervals increasingly according to their left endpoints, then we get a total order on them, and now the incomparability graphs of these posets will inherit this total order on the vertices, giving the labelled graphs $G$ involved in the Shareshian-Wachs conjecture. In our article we call these labelled graphs \emph{Dyck graphs}, as they are in a natural bijection with Dyck paths. \smallskip If in the definition of unit interval orders we drop the condition on the intervals to have all the same length, then we get the \emph{interval orders}. The incomparability graphs of these posets will be called \emph{interval graphs} in our article, and their chromatic quasisymmetric functions $\chi_G[X;q]$ are the object of our study. Inspired by the work of Abreu and Nigro \cite{Abreu_Nigro_Forests}, given an interval graph $G$, for every increasing spanning forest $F$ of $G$ we will define a quasisymmetric function $\mathcal{Q}_F^{(G)}$ so that the following formula holds (the statistic $\mathsf{wt}_G(F)$ is essentially the one in \cite{Abreu_Nigro_Forests}, while $\mathsf{ISF}(G)$ is the set of increasing spanning forests of $G$). \begin{manualtheorem}{\ref{thm:chrom_forests_formula}} Given an interval graph $G$ on $n$ vertices, we have \begin{equation} \chi_G[X;q]=\sum_{F\in \mathsf{ISF}(G)}q^{\mathsf{wt}_G(F)}\mathcal{Q}_F^{(G)}. \end{equation} \end{manualtheorem} For every simple graph $G$ with totally ordered vertices we introduce the quasisymmetric function $\mathrm{LLT}_G[X;q]$, analogous to $\chi_G[X;q]$ but defined as a sum over all (not necessarily proper) colorings of $G$ of suitable monomials. %Recall the well-known involutions $\rho$ and $\psi$ of the algebra $\mathrm{QSym}$ of quasisymmetric functions defined by $\psi(L_{\alpha}):=L_{\alpha^c}$ and $\rho(L_{\alpha})=L_{\alpha^r}$, where $\{L_{\alpha}\mid n\in \mathbb{N},\alpha\vDash n\}$ is the basis of the fundamental (Gessel) quasisymmetric functions. The main result of this article is the following theorem, stated in plethystic notation ($\rho$ and $\psi$ are well-known involutions of the algebra $\mathrm{QSym}$ of quasisymmetric functions). \begin{manualtheorem}{\ref{thm:main_theorem}} Given $G$ an interval graph on $n$ vertices, we have \begin{equation*} %\label{eq:main_identity} (1-q)^n \rho \left(\psi \chi_G\left[X\frac{1}{1-q}\right]\right)=\mathrm{LLT}_G[X;q]. \end{equation*} \end{manualtheorem} This result extends the identity in \cite[Proposition~3.5]{Carlsson-Mellit-ShuffleConj-2015} proved by Carlsson and Mellit when $G$ is a Dyck graph. %, which can be restated as follows using \emph{plethystic notation} (for which we refer to \cite{Loehr-Remmel-plethystic-2011}). % %\begin{theorem}[Carlsson, Mellit] %If $G$ is a Dyck graph on $n$ vertices, then %\begin{equation} \label{eq:CM_identity} %(1-q)^n \omega \chi_G\left[X\frac{1}{1-q}\right] =\mathrm{LLT}_G[X;q]. %\end{equation} %\end{theorem} In \cite{Ballantine_et_al} the authors study a family of quasisymmetric functions that they call \emph{type 1 quasisymmetric power sums}, denoted $\Psi_\alpha$. Actually $\{\Psi_\alpha\mid \alpha\text{ composition}\}$ is a basis of $\mathrm{QSym}$ that refines the power symmetric function basis. We state the following conjecture which is supposed to provide an extension of the formula proved by Athanasiadis in \cite{Athanasiadis}. \begin{manualconj}{\ref{conj:interval_psi_exp}} For any interval graph $G$ on $n$ vertices we have \[\rho\psi \chi_G[X;q]=\sum_{\alpha\vDash n}\frac{\Psi_\alpha}{z_{\alpha}}\sum_{\sigma \in \mathcal{N}_{G,\alpha}}q^{\widetilde{\mathsf{inv}}_G(\sigma)}.\] \end{manualconj} %\medskip % %The rest of the this work is organized in the following way. In Section~2 we give the preliminaries about interval graphs, quasisymmetric functions, colorings and their inversions, proving related formulas for proper colorings and (co)inversions in the case of interval graphs. In Section~3 we introduce the increasing spanning forests of interval graphs $G$, their weight $\mathsf{wt}_G$ and the function $\Phi_G$. In Section~4 we show Theorem~\ref{thm:main_theorem}, introducing the objects of the main identity and a fundamental formula that is at the heart of our proof of Theorem~\ref{thm:main_theorem}, which is based on a result of Kasraoui \cite{Kasraoui_maj-inv}. In Section~5 we will talk about our conjectures about the type 1 quasisymmetric power sums basis (for example, Conjecture~\ref{conj:interval_psi_exp}). \section{Preliminaries} For every $n\in \mathbb{Z}_{>0}:=\{1,2,3,\dots\}$ we will use the notation $[n]:=\{1,2,\dots,n\}$. \subsection{Interval graphs} In this abstract a graph will always be simple, i.e.\ no loops and no multiple edges. In our work a (\emph{labelled}) \emph{graph} $G=([n],E)$ will be called \emph{interval} if whenever $\{i,j\}\in E$ and $i0}$, let $G=([n],E)$ be a (simple) graph. A \emph{coloring} of $G$ is simply a function $\kappa:[n]\to \mathbb{Z}_{>0}$. We call $\mathsf{C}(G)$ the set of colorings of $G$. We can and will identify a coloring $\kappa\in \mathsf{C}(G)$ with the word $\kappa(1)\kappa(2)\cdots \kappa(n)$ in the alphabet $\mathbb{Z}_{>0}$. A \emph{coloring} of $G$ is called \emph{proper} if $\{i,j\}\in E$ implies $\kappa(i)\neq \kappa(j)$. We call $\mathsf{PC}(G)$ the set of proper colorings of $G$. Notice that with the above identifications we always have that the symmetric group $\mathfrak{S}_n$ is a subset of $\mathsf{PC}(G)$. Given $\kappa\in \mathsf{C}(G)$ a \emph{$G$-inversion} of $\kappa$ is a pair $(i,j)$ with $\{i,j\}\in E$, $i\kappa(j)$. Similarly, a \emph{$G$-coinversion} of $\kappa$ is a pair $(i,j)$ with $\{i,j\}\in E$, $i0}$, let $G=([n],E)$ be an interval graph. Given $\tau \in \mathfrak{S}_n$, set \[\mathsf{Des}_G(\tau):=\{i\in [n-1]\mid \tau(i)>\tau(i+1)\text{ or } \{\tau(i),\tau(i+1)\}\in E\} \subseteq [n-1]. \] The next proposition is sort of implicit in the work of Shareshian and Wachs \cite{Shareshian_Wachs_Advances}. %The next two lemmas are implicit in the work of Shareshian and Wachs \cite{Shareshian_Wachs_Advances}. We will relate them to the results in \cite{Shareshian_Wachs_Advances} in Section~\ref{sec:chromatic_LLT}. % %\begin{lemma} % Given $G=([n],E)$ an interval graph and given $\sigma\in \mathfrak{S}_n$, the following statements about $\kappa\in \mathsf{C}(G)$ are equivalent: % \begin{enumerate} % \item $\kappa\in \mathsf{PC}(G)$ and $\phi(\kappa)=\sigma$; % \item $\kappa(\sigma^{-1}(i))\leq \kappa(\sigma^{-1}(i+1))$ for every $i\in [n-1]$ and\\ % $\kappa(\sigma^{-1}(i))< \kappa(\sigma^{-1}(i+1))$ for every $i\in \mathsf{Des}_G(\sigma^{-1})$. % \end{enumerate} %\end{lemma} % %An immediate corollary of the previous lemma is the following result. %\begin{lemma} % Given $G=([n],E)$ an interval graph and given $\sigma\in \mathfrak{S}_n$, we have % \[\mathop{\sum_{\kappa\in \mathsf{PC}(G)}}_{\phi(\kappa)=\sigma}x_\kappa=L_{n,\mathsf{Des}_G(\sigma^{-1})}.\] %\end{lemma} %Combining the previous lemmas with Remark~\ref{rem:Inv_CoInv}, we get the following formulas. \begin{proposition} \label{prop:inv_coinv_formulae} Given $G=([n],E)$ an interval graph, for every $S\in \mathsf{Inv}(G)$ we have \[\mathop{\sum_{\kappa\in \mathsf{PC}(G)}}_{\mathsf{Inv}_G(\kappa)=S}q^{\mathsf{inv}_G(\kappa)}x_\kappa=\mathop{\sum_{\sigma\in \mathfrak{S}_n}}_{\mathsf{Inv}_G(\sigma)=S}q^{\mathsf{inv}_G(\sigma)}L_{n,\mathsf{Des}_G(\sigma^{-1})}=q^{|S|}\mathop{\sum_{\sigma\in \mathfrak{S}_n}}_{\mathsf{Inv}_G(\sigma)=S}L_{n,\mathsf{Des}_G(\sigma^{-1})},\] and for every $S\in \mathsf{CoInv}(G)$ we have \[\mathop{\sum_{\kappa\in \mathsf{PC}(G)}}_{\mathsf{CoInv}_G(\kappa)=S}q^{\mathsf{coinv}_G(\kappa)}x_\kappa=\mathop{\sum_{\sigma\in \mathfrak{S}_n}}_{\mathsf{CoInv}_G(\sigma)=S}q^{\mathsf{coinv}_G(\sigma)}L_{n,\mathsf{Des}_G(\sigma^{-1})}=q^{|S|}\mathop{\sum_{\sigma\in \mathfrak{S}_n}}_{\mathsf{CoInv}_G(\sigma)=S}L_{n,\mathsf{Des}_G(\sigma^{-1})}.\] \end{proposition} \section{Increasing spanning forests and quasisymmetric functions} Given a graph $G=([n],E)$, we say that a subgraph $F\subseteq G$ is a \emph{spanning forest} if $F$ is a forest on the vertices $[n]$. In this case, the connected components are labelled trees, with the vertex set contained in $[n]$. Given such a tree $T$, we call $root(T)$ its minimal vertex. Then $T$ is called \emph{increasing} if in the paths stemming from $root(T)$ the other vertices appear in increasing order. A spanning forest $F$ of a graph $G=([n],E)$ is called \emph{increasing} if all its connected components are increasing trees. In this case, we think of $F$ as the ordered collection $F=(T_1,T_2,\dots,T_k)$, where the $T_i$ are its connected components, ordered so that \[ root(T_1)j$ and $(u,v)\in E$ (so that $u\sigma(i+1)\},$ and $\widetilde{\maj}_{G^c}(\sigma) :=\sum_{i\in \widetilde{\mathsf{Des}}_G(\sigma)}i,$ where %\[ %\widetilde{\mathsf{Des}}_G(\sigma) :=\{i\in [n-1]\mid \sigma(i)>\sigma(i+1)\text{ and }\{\sigma(i),\sigma(i+1)\}\notin E\}. %\] % %Theorem \ref{thm:MainFormula_beta_(n)} is a reformulation of a theorem in \cite{Kasraoui_maj-inv} (cf. \cite{Kasraoui_maj-inv}*{Corollary~1.11}). % %\begin{proposition}[Kasraoui]\label{prop:foata_mod} % If $G=([n],E)$ is an interval graph, then % \[ % \varphi_G|_{\mathfrak{S}_n}:\mathfrak{S}_n\rightarrow \mathfrak{S}_n % \] % is a bijection such that for every $\sigma\in \mathfrak{S}_n$ we have \[\inv(\varphi_G(\sigma))=\widetilde{\inv}_G(\sigma)+\widetilde{\maj}_{G^c}(\sigma).\] %\end{proposition} \begin{remark} This is really an extension of \cite[Proposition~3.5]{Carlsson-Mellit-ShuffleConj-2015}. Indeed, when $G$ is a Dyck graph, $\chi_G[X;q]$ is symmetric (by \cite[Theorem~4.5]{Shareshian_Wachs_Advances}), the plethysm reduces to the usual plethysm of symmetric functions (cf.\ \cite{Loehr-Remmel-plethystic-2011}), $\rho$ fixes the symmetric functions while $\psi$ gives the usual $\omega$ involution of symmetric functions, and $\mathrm{LLT}_G[X;q]$ is precisely the unicellular LLT symmetric function corresponding to the Dyck graph $G$, so, our \eqref{eq:main_identity} is just a rewriting of \cite[Proposition~3.5]{Carlsson-Mellit-ShuffleConj-2015}. \end{remark} \section{Expansions in the $\Psi_\alpha$} In \cite{Ballantine_et_al} the authors study a family of quasisymmetric functions that they call \emph{type 1 quasisymmetric power sums}, and they denote $\Psi_\alpha$. Actually $\{\Psi_\alpha\mid \alpha\text{ composition}\}$ is a basis of $\mathrm{QSym}$, and these quasisymmetric functions refine the power symmetric functions, i.e.\ for any partition $\lambda\vdash n$ \begin{equation} \label{eq:psi_plambda} \mathop{\sum_{\alpha\vDash n}}_{\lambda(\alpha)=\lambda}\Psi_\alpha=p_\lambda\ , \end{equation} where $\lambda(\alpha)$ is the unique partition obtained by rearranging in weakly decreasing order the parts of $\alpha$, and the $p_\lambda=p_{\lambda_1}p_{\lambda_2}\cdots$ are the usual \emph{power symmetric functions}. Given $G=([n],E)$ a graph and $\sigma\in\mathfrak{S}_n$ a permutation, we say that $r\in [n]$ is a \emph{left-to-right $G$-maximum} if for every $s\in [r-1]$ we have $\sigma(s)<\sigma(r)$ and $\{\sigma(s),\sigma(r)\}\notin E$. Notice that $1$ is always a left-to-right $G$-maximum, that we call \emph{trivial}. We set \[\widetilde{\mathsf{inv}}_G(\sigma) :=\{\{\sigma(i),\sigma(j)\}\in E\mid i\sigma(i+1)\},\] and% $\widetilde{\maj}_{G^c}(\sigma) :=\sum_{i\in \widetilde{\mathsf{Des}}_G(\sigma)}i,$ where \[ \widetilde{\mathsf{Des}}_G(\sigma) :=\{i\in [n-1]\mid \sigma(i)>\sigma(i+1)\text{ and }\{\sigma(i),\sigma(i+1)\}\notin E\}. \] We say that $i\in [n-1]$ is a \emph{$G$-descent} if $i\in \widetilde{\mathsf{Des}}_G(\sigma)$. Given a composition $\alpha=(\alpha_1,\alpha_2,\dots,\alpha_k)\vDash n$, let $\mathcal{N}_{G,\alpha}$ be the set of $\sigma\in \mathfrak{S}_n$ such that if we break $\sigma=\sigma(1)\sigma(2)\cdots \sigma(n)$ into contiguous segments of lengths $\alpha_1,\alpha_2,\dots,\alpha_k$, each contiguous segment has neither a $G$-descent nor a nontrivial left-to-right $G$-maximum. Given a composition $\alpha$, define $z_\alpha:=z_{\lambda(\alpha)}$, where, as usual, for every partition $\lambda\vdash n$, if $m_i$ denotes the number of parts of $\lambda$ equal to $i$, then $z_\lambda:=\prod_{i=1}^nm_i!\cdot i^{m_i}$. Finally, recall the involution $\omega:\mathrm{QSym}\to \mathrm{QSym}$ from Section~\ref{sec:qsym}. We state our conjecture. \begin{conjecture} \label{conj:interval_psi_exp} For any interval graph $G=([n],E)$ we have \[\omega \chi_G[X;q]=\sum_{\alpha\vDash n}\frac{\Psi_\alpha}{z_{\alpha}}\sum_{\sigma \in \mathcal{N}_{G,\alpha}}q^{\widetilde{\mathsf{inv}}_G(\sigma)}.\] \end{conjecture} This conjecture should generalize the following formula, proposed by Shareshian and Wachs \cite[Conjecture~7.6]{Shareshian_Wachs_Advances} and later proved by Athanasiadis \cite{Athanasiadis}. \begin{theorem} \label{thm:athanasiadis} For any Dyck graph $G=([n],E)$ we have \[\omega \chi_G[X;q]=\sum_{\lambda\vdash n}\frac{p_\lambda}{z_{\lambda}}\sum_{\sigma \in \mathcal{N}_{G,\lambda}}q^{\widetilde{\mathsf{inv}}_G(\sigma)}.\] \end{theorem} %Notice that thanks to Theorem~\ref{thm:athanasiadis} and \eqref{eq:psi_plambda}, our Conjecture~\ref{conj:interval_psi_exp} is equivalent to the following tempting conjecture. %\begin{conjecture} %For any Dyck graph $G=([n],E)$ and any composition $\alpha\vDash n$ we have %\[ \sum_{\sigma \in \mathcal{N}_{G,\alpha}}q^{\widetilde{\mathsf{inv}}_G(\sigma)}=\sum_{\sigma \in \mathcal{N}_{G,\lambda(\alpha)}}q^{\widetilde{\mathsf{inv}}_G(\sigma)}. \] %\end{conjecture} \acknowledgements The authors are partially supported by PRIN 2017YRA3LK\_005 \emph{Moduli and Lie Theory} and PRIN 2022A7L229 \emph{ALgebraic and TOPological combinatorics (ALTOP)}. We thank Philippe Nadeau for useful discussions. %functioning DOI: MR0000004. Finally, a reference to equation~\eqref{eqn:eq1}. And a reference to Figure~\ref{fig:plot}. %\nocite{Dyer, hump,BB, bakem} %% if you use biblatex then this generates the bibliography %% if you use some other method then remove this and do it your own way \printbibliography \end{document} .