\section{Bijection between \texorpdfstring{$\SYT(Z(d,r))$}{} and \texorpdfstring{$\Red(w^{(d,r)})$}{} via the Kra\'skiewicz's insertion}\label{sec:kraskiewicz} We will follow the notations as recorded in Section~1.3 of \cite{Lam1995thesis}. For a shifted tableau $T$ of shape $\lambda = (\lambda_1,\ldots,\lambda_d)$, define $\pi(T) = T_d T_{d-1},\ldots,T_1$ to be the reading word of $T$ obtained by reading left to right along rows and from bottom to top, where $T_i$ represents the $i$-th row. For a unimodal sequence of integers \[\mathbf{R} = (r_1>r_2>\ldots>r_kr_2>\ldots>r_k)$, and the increasing part of $\mathbf{R}$ to be $\mathbf{R}^{\uparrow} = (r_{k+1}0$ and $r\geq0$, $\sh(P(w^{(d,r)})) = Z(d,r)$. Moreover, \begin{equation*} \begin{split} P(w^{(d,r)})(i,j) = \begin{cases} r-j &\text{ if }j<0,\\ j &\text{ if }j\geq 0. \end{cases} \end{split} \end{equation*} \end{prop} See \cref{fig:trapezoidT} for this tableaux. A concrete example is also shown in \cref{ex:w-lam}. \begin{figure}[h!] \centering \ytableausetup{boxsize=2.5em} \begin{ytableau} \scriptstyle{r{+}d{-}1} & \none[\cdots] & r{+}1 & 0 & \none[\cdots] & r & r{+}1& \none[\cdots] & \scriptstyle{r{+}d{-}1}\\ \none & \none[\ddots] & \none[\vdots] & \none[\vdots] & \none & \none[\vdots] &\none[\vdots] & \none[\iddots]\\ \none & \none & r{+}1 & 0 & \none[\cdots] & r & r{+}1\\ \none & \none & \none & 0 & \none[\cdots] & r \end{ytableau} \caption{The insertion tableaux $P(w^{(d,r)})$ of shape $Z(d,r)$} \label{fig:trapezoidT} \end{figure} \end{comment} \begin{lemma}\label{lm:vexillary} $\SDT(w^{(d,r)})$ consists of exactly one shifted tableau. In other words, any $\mathbf{a}\in \Red(w^{(d,r)})$ has the same $P$ tableau. \end{lemma} \begin{cor}\label{cor:uniquePtableau} By restricting to the recording tableau, Kra\'skiewicz's insertion gives a bijection $\mathbf{a}\mapsto Q(\mathbf{a})$ between $\Red(w^{(d,r)})$ and $\SYT(Z(d,r))$. \end{cor} Combining \cref{cor:reduced-word-balanced} and \cref{cor:uniquePtableau}, we derive \cref{thm:main} for the trapezoid shape $Z(d,r)$. .