\section{Bijection between \texorpdfstring{$\BS(Z(d,r))$}{} and \texorpdfstring{$\Red(w^{(d,r)})$}{} via reflection order}\label{sec:trapezoid} A crucial shape for our analysis is the \emph{trapezoid} \[Z(d,r):=(r+2d-1,r+2d-3,\ldots,r+3,r+1)\] with height $d$ and base lengths $r+2d-1$ and $r+1$. In particular, $Z(d,0)$ is the \textit{double staircase} and every shifted shape is contained in some trapezoid of the same height. Set $e_{-j} = -e_j$ for all $j>0$ and $e_0=0$, and consider the labeling $f:Z(d,r) \longrightarrow \Phi^{+}(B_{d+r})$ where \begin{equation}\label{eqn:defrootlabel} \begin{split} f(i,j) = \begin{cases} e_{d+1-i}-e_{j} & \text{if } j\leq 0,\\ % e_i & \text{if } j = 0,\\ e_{d+1-i}+e_{j+d}&\text{if }0r. \end{cases} \end{split} \end{equation} Define the permutation $w^{(d,r)}\in W(B_{d+r})$ associated to $Z(d,r)$ by \begin{equation}\label{eqn:defw} \begin{split} w^{(d,r)}(i) := \begin{cases} d+i &\text{if }0r. \end{cases} \end{split} \end{equation} \begin{prop} For all $d>0$ and $r\geq 0$, $f(Z(d,r)) = \Inv(w^{(d,r)})$. \end{prop} The labeling $f$ can also be extended to a labeling $\tilde{f}:\tilde{Z}(d,r)\to \Phi^+(B_{d+r})$ where \[\tilde{Z}(d,r)=Z(d,r)\cup\{(1,\bar d),(2,\overline{d-1}),\ldots(d,\bar1)\}\] is the extended shape of $Z(d,r)$ with $d$ extra boxes as defined in \cref{sec:prelim}. The extended labeling is given by \[\tilde{f}(i,j)=\begin{cases} 2e_{d+1-i} &\text{if }j=\overline{d+1-i},\\ f(i,j) &\text{otherwise}. \end{cases}\] \begin{ex}\label{ex:45123} For $d = 3$ and $r = 2$, we have $Z(d,r) = (7,5,3)$ and $w^{(3,2)} = 45\bar{1}\bar{2}\bar{3}\in W(B_5)$. See \cref{fig:d=3r=2} for the extended labeling $\tilde f$ in this case. \begin{figure}[h!] \centering \ytableausetup{boxsize=3em} \begin{ytableau} \none[2e_3] & e_3{+}e_2 & e_3{+}e_1 & e_3 & e_4{+}e_3 & e_5{+}e_3 & e_3{-}e_1 & e_3{-}e_2 \\ \none & \none[2e_2] & e_2{+}e_1 & e_2 & e_4{+}e_2 & e_5{+}e_2 & e_2{-}e_1\\ \none & \none & \none[2e_1] & e_1 & e_4{+}e_1 & e_5{+}e_1 \end{ytableau} \caption{The extended labeling $\tilde{f}$ of $\tilde{Z}(3,2)$} \label{fig:d=3r=2} \end{figure} \end{ex} The filling of a balanced shifted tableau $B\in\BS(Z(d,r))$ can be viewed as a map $B:Z(d,r)\to\mathbb{N}$ by sending a box to its entry. Then the composition $Bf^{-1}:\Inv(w^{(d,r)})\to \mathbb{N}$ encodes an ordering of the roots in $\Inv(w^{(d,r)})$. We will show that this actually gives a reflection order in $\ro(w^{(d,r)})$. \begin{prop}\label{prop:root-order-balanced} The map $B\mapsto Bf^{-1}$ is a bijection between $\BS(Z(d,r))$ and $\ro(w^{(d,r)})$, and thus induces a bijection between $\BS(Z(d,r))$ and $\Red(w^{(d,r)})$. \end{prop} \begin{comment} To prove \cref{prop:root-order-balanced}, we need the following technical lemmas. \begin{lemma}\label{lm:same-col-order} Given $B\in \BS(\lambda)$ and $j\geq 0$, if column $j$ and $j+1$ have the same length in $B$, then $B(i,j)