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Abstract. We give a criterion for equivalence between equilogical and
topological spaces. This enables us to prove that a series of interesting
categories of topological spaces are complete subcartesian closed subcategories
of equilogical spaces.

Keywords: equilogical space, cartesian closed category.

В препринте [1] Д.Скотт определил категорию EQU эквилогических про-
странств, обладающую рядом замечательных свойств.

Объектами EQU являются пары (X,∼X), где X – топологическое (T0) про-
странство, а ∼X – (произвольное) отношение эквивалентности на X. Если
(X,∼X) и (Y,∼Y ) – эквилогические пространства (т.е. объекты EQU), то эк-
вивариантным отображением из (X,∼X) в (Y,∼Y ) называется всякое непре-
рывное отображение f : X → Y , сохраняющее эквивалентности (∼X) и ∼Y

(т.е. для ξ, ξ′ ∈ X из ξ ∼X ξ′ следует f(ξ) ∼Y f(ξ′). Два эквивариантных отоб-
ражения f и g из (X,∼X) в (Y,∼Y ) эквивалентны (f ≡ g), если для любого
ξ ∈ X f(ξ) ∼Y g(ξ). Морфизмами в категории EQU из (X,∼X) в (Y,∼Y )
являются классы эквивалентности эквивариантных отображений из (X,∼X) в
(Y,∼Y ) с естественно определенной композицией (по представителям).

Категория EQU содержит категорию TOP топологических пространств в
качестве полной подкатегории, если отождествить топологическое простран-
ство X с эквилогическим пространством (X, idX).

Основным категорным свойством категории EQU является ее декартова за-
мкнутость (теорема 3.5 в [1]).
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Для доказательства этой теоремы Д.Скотт определил еще одну категорию
PEQU.

Объектами категории PEQU частичных эквилогических пространств яв-
ляются пары (P,∼P ) , где P – топологическое пространство, топология которо-
го является топологией Скотта (полной)алгебраической решетки (см. [2]), а ∼P

– частичное отношение эквивалентности на P (т.е. симметричное и транзитив-
ное отношение; через δ(∼P ) будем обозначать множество {ξ | ξ ∼P ξ, ξ ∈ P}).
Морфизмами категории PEQU из (P,∼P ) в (Q,∼Q) являются классы экви-
валентности непрерывных отображений f : P → Q, сохраняющих частичные
эквивалентности (для ξ, ξ′ ∈ δ(∼P ) из ξ ∼P ξ′ следует, что f(ξ), f(ξ′) ∈ δ(∼Q)
и f(ξ) ∼Q f(ξ′)) относительно эквивалентности ≡, определенной так

f ≡ g ­ ∀ξ ∈ δ(∼P )(f(ξ) ∼Q g(ξ)).
Оказывается (теорема 3.4 в [1]), что категории EQU и PEQU эквивалент-

ны. Эквивалентность определяется следующими двумя функторами R : PEQU →
EQU и ∗ : EQU → PEQU .

Если (P,∼P ) – объект PEQU , то

R((P,∼P )) ­ (δ(∼P ),∼P ¹ δ(∼P )2);
δ(∼P ) ⊆ P – подпространство P , а ∼P ¹ (δ(∼P )2 – отношение эквивалентности
на нем. Распространение R на морфизмы очевидно.

Пусть (X,∼X) – объект EQU ; если TX – топология X(т.е. семейство всех
открытых подмножеств X) и P (TX) – (полная алгебраическая) решетка всех
подмножеств TX , то X∗ – это P (TX) в топологии Скотта. Для ξ ∈ X пусть
ξ̂ ­ {U | U ∈ TX , ξ ∈ U}; ξ̂ является элементом X∗. Отображение ξ 7→
ξ̂, ξ ∈ X является гомеоморфным вложением X в X∗; частичное отношение
эквивалентности ∼X∗ на X∗ определим так, что δ(∼X∗) ­ X̂ = {ξ̂ | ξ ∈ X}
и ξ̂ ∼X∗ ξ̂′ ⇔ ξ ∼X ξ′ для любых ξ, ξ′ ∈ X. Если f : X → Y – эквива-
риантное отображение из (X,∼X) в (Y,∼Y ), то индуцированное отображение
f̂ : X̂ → Ŷ ⊆ Y ∗ имеет продолжение (Y ∗ – инъективное пространство, см. [2, 3])
до непрерывного отображения из X∗ в Y ∗. Так как любые два таких продолже-
ния, очевидно, эквивалентны относительно ≡, то это позволяет доопределить
функтор ∗ и на морфизмы.

В [1] доказано (теорема 4.3), что категория bc-областей является полной
поддекартово замкнутой подкатегорией категории EQU и поставлен вопрос
(вопрос 2), не будет ли категория бифинитных областей так же полной под-
декартово замкнутой подкатегорией категории EQU?. В настоящей работе
дается положительный ответ на этот вопрос. Для этого исследуется вопрос,
когда объект из EQU (PEQU) изоморфен топологическому объекту.

Первая характеризация довольно очевидна.

Предложение 1. Объект (X,∼X) категории EQU изоморфен топологиче-
скому объекту тогда и только тогда, когда существует (непрерывная) ре-
тракция r : X → X такая, что ξ ∼X r(ξ) для всех ξ ∈ X и ограничение
отношения ∼X на r(X) есть отношение равенства idr(X).

Пусть r : X → X – ретракция с указанными в предложении свойствами;
r(X) как подпространство X вместе с idr(X) является топологическим объек-
том EQU ; тогда эквивариантные отображения r : X → r(X) и idr(X) : (r(X) →
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X определяют, очевидно, изоморфизм объектов (X,∼X) и (r(X), idr(X)) в ка-
тегории EQU .

Пусть (Y, idY ) топологический объект EQU, ϕ : X → Y, ψ : Y → X –
эквивариантные отображения (из (X,∼X) в (Y, idY ) и из (Y, idY ) в (X,∼X)),
реализующие изоморфизм в EQU . Пусть r ­ ψϕ; так как ϕψ = idY : Y → Y ,
то r2 = ψϕψϕ = ψϕ = r – ретракция. Условие r(ξ) ∼X ξ для всех ξ ∈ X в
точности означает, что r ≡ idX . ¤

Аналогично доказывается и характеризация топологических объектов в
PEQU :

Предложение 2. Объект (P,∼P ) категории PEQU изоморфен топологи-
ческому объекту тогда и только тогда, когда существует эквивариантное
отображение r : P → P объекта (P,∼P ) в себя, эквивалентное тождествен-
ному idP , такое, что ограничение ∼P на r(δ(∼P )) совпадает с отношением
равенства idr(δ(∼P )). ¤

Для решения указанного выше вопроса решающим является выяснение то-
го, когда объект, представляющий в (декартово замкнутой!) категории EQU
семейство EQU(X, Y ) всех морфизмов из (X, idX) в (Y, idY ), изоморфен топо-
логическому объекту. Следующая теорема позволяет ответить на многие такие
вопросы.

Теорема 1. Для топологического пространства X следующие свойства эк-
вивалентны:

1. Решетка (TX ,⊆) всех открытых подмножеств X является непрерыв-
ной;

2. EQU(X,Y ) изоморфен топологическому объекту EQU для любого топо-
логического пространства Y ;

3. EQU(X, S) изоморфен топологическому объекту EQU , где S = {⊥, T} –
пространство ("двоеточие") Серпинского.

Для доказательства удобнее работать в эквивалентной категории PEQU ,
где имеется следующее явное описание объекта PEQU((P,∼P ), (Q,∼Q)). Пусть
C(P, Q) – семейство всех непрерывных отображений из P в Q в топологии
поточечной сходимости. Частичное отношение эквивалентности ∼P

Q на C(P, Q)
определяется так:

δ(∼P
Q) ­ {f | f ∈ C(P,Q), f(δ(∼P )) ⊆ δ(∼Q),

∀π1π
′ ∈ δ(∼P )(π ∼P π′ ⇒ f(π) ∼Q f(π′))};

для f, g ∈ δ(∼P
Q)

f ∼P
Q⇔ ∀π ∈ δ(∼P )(f(π) ∼Q g(π)).

Тогда (C(P,Q),∼P
Q) – объект PEQU , представляющий PEQU((P,∼P ),

(Q,∼Q)).
Установим импликацию 1. ⇒ 2. Рассмотрим сначала случай, когда (Y, idY )

– объект PEQU (т.е. когда Y – полная алгебраическая решетка топологий
Скотта), и установим, что при выполнении свойства 1 для пространства X
объект
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PEQU(X∗, (Y, idY )) = (C(X∗, Y ),∼∗Y ),

где δ(∼X∗
Y ) = {f | f ∈ C(X∗, Y ), ∀ξ, ξ′ ∈ X

((ξ ∼X ξ′) ⇒ f(ξ̂) = f(ξ̂′))}
и для f, g ∈ δ(∼X∗

Y ) (f ∼X∗
Y ⇔ f ¹ X̂ = g ¹ X̂) удовлетворяет условиям пред-

ложения 2.
Пусть (TX ,⊆) является непрерывной решеткой (см.[2]); для U, V ∈ TX за-

пись V ≺ U будет означать, что для любого покрытия {Ui | i ∈ I} множества

U(U =
⋃

i∈I

Ui)

открытыми множествами найдется конечное I0 ⊆ I такое, что V ⊆ ⋃
i∈I0

Ui

(в частности, V ≺ U влечет, что V ⊆ U). Непрерывность решетки (TX ,⊆)
означает в точности, что для любого U ∈ TX имеет место равенство U =

⋃{V |
V ∈ TX , V ≺ U}.
Следствие 1. Если (TX ,⊆) – непрерывная решетка, V,U ∈ TX , V ≺ U ; U ⊆⋃
i∈I

Ui, Vi ∈ TX ,. Тогда существует конечное I0 ⊆ I такое, что

V ≺
⋃

i∈I0

Ui.

Действительно, пусть W ∗
i ­ {W | W ∈ TX ,W ≺ Ui}, i ∈ I. Тогда из

непрерывности (TX ,⊆) следует, что Ui =
⋃{W | W ∈ W ∗

i }, i ∈ I. Отсюда
U ⊆ ⋃{W | W ∈ ⋃

i∈I

W ∗
i }. Тогда существуют W0, . . . , Wn ∈ UW ∗

i такие, что

U ⊆ ⋃
j≤n

Wj . Пусть i0, . . . , in ∈ I таковы, что Wj ∈ W ∗
ij , j ≤ n.

U ⊆
⋃

j≤n

Wj ≺
⋃

j≤n

Uij .

¤
Топология пространства C(X∗, Y ) определяется предбазисом множеств вида

〈S, a〉, где S – конечное подмножество TX(S ∈ X∗), a — компактный элемент
Y (a ∈ C(Y )) и 〈S, a〉 ­ {f | f ∈ C(X∗, Y ), f(S) ∈↑ a(­ {η | η, a ≤ η}}.

Пусть f ∈ C(X∗, Y ); определим систему Wf базисных открытых подмно-
жеств C(X∗, Y ) следующим образом:

Пусть a – компактный элемент и пусть Uf
a ­ {ξ | ξ ∈ X, ξ̂ ∈ f−1(↑ a)}.

Так как Ûf
a ­ {ξ̂ | ξ ∈ Ua} = X̂ ∩ f−1(↑ a) и f непрерывно (↑ a открыто в

Y ), то Uf
a ∈ TX . Полагаем

W a
f ­ {〈{V }, a〉 | V ≺ Uf

a , V ∈ TX}; Wf ­
⋃

a∈C(Y )

W a
f .

Существует наименьшая функция g ∈ C(X∗, Y ) во множестве

∩Wf = ∩{〈{V }, a〉 | 〈{V }, a〉 ∈ W a
1 , a ∈ C(Y )},

а именно g = sup{f〈{V },a〉 | 〈{V }, a〉 ∈ W a
1 , a ∈ C(Y )}, где
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f〈{V },a〉(S) ­
{

a, если V ∈ S({V } ⊆ S)
⊥Y , если V 6∈ S,

(для всех S ∈ X∗ = P (TX).
Очевидно, что f〈{V },a〉 ¹ X̂ ≤ f ¹ X̂ (для 〈{V }, a〉 ∈ W a

1 , a ∈ C(Y ); следова-
тельно, g ¹ X̂ ≤ f ¹ X̂.

Проверим, что g ¹ X̂ = f ¹ X̂. Пусть ξ ∈ X, a ∈ C(Y ) и a ≤Y f(ξ̂); тогда ξ̂ ∈
Ûa, ξ ∈ Ua и (используя непрерывность решетки (TX ,⊆))ξ ∈ V для некоторого
V ≺ Ua. Тогда g ∈ 〈{V }, a〉 и, следовательно, g(ξ̂) ≥ g({V }) ≥ f〈{V },a〉({V }) = a.
Итак, g(ξ̂) ≥ sup{a | a ∈ C(Y ), a ≤ f(ξ̂)} = f(ξ̂). Следовательно, g ¹ X̂ ≥ f ¹ X̂

и g ¹ X̂ = f ¹ X̂.
Проверим, что g ¹ X̂ = f ¹ X̂. Пусть ξ ∈ X a ∈ C(Y ) и a ≤Y f(ξ̂); Тогда

ξ̂ ∈ Ûa, ξ ∈ Ua и по непрерывности решетки (TX ,⊇) найдется V ∈ TX такое,
что V ≺ Ua и ξ ∈ V . Тогда 〈{V }, a〉 ∈ W a

f и g ≥ f〈{V },a〉; следовательно, g(ξ̂) ≥
g({V }) ≥ f〈{V },a〉({V }) = a. Итак, g(ξ̂) ≥ sup{a | a ∈ C(Y ), a ≤ f(ξ̂)} = f(ξ̂).
Следовательно, g ¹ X̂ ≥ f ¹ X̂ и g ¹ X̂ = f ¹ X̂.

Таким образом определено отображение f 7→ g, f ∈ C(X∗, Y ), которое обо-
значим через r(g = r(f)). Из определения r видно, что r(f) зависит только от
f ¹ X̂, т.е. если f ′ ∈ C(X∗, Y ) и f ¹ X̂ = f ′ ¹ X̂, то r(f) = r(f ′). Покажем, что
отображение r является непрерывным.

Пусть r(f) ∈ 〈S, a〉, S = {V0, . . . , Vn} ⊆ Tx, a ∈ C(Y ) и a 6∈ YY . Так как

r(f)(S) = sup
〈{Vi},ai〉∈Wf

f〈{Vi},ai〉(S),

то найдутся ai ∈ C(Y ), i ≤ n такие, что 〈{Vi}, ai〉 ∈ Wf и a ≤ a0t . . .tan. Тогда
r(f) ∈ ⋂

i≤n

〈{Vi}, ai〉. Поэтому достаточно рассмотреть случай, когда базисная

окрестность имеет вид 〈{V }, a〉. Итак, пусть r(f) ∈ 〈{V }, a〉. Так как r(f)−1(↑
a)∩X̂ = f−1(↑ a)∩X̂ = Ûa, то для любого ξ ∈ Ua найдется конечное множество
Sξ = {V ξ

0 , . . . , V ξ
nξ
} ⊆ ξ̂ такое, что f(S) ≥ a для любого (SX ⊇)S ⊇ Sξ. Полагаем

Vξ ­
⋂

i≤nξ

V ξ
i ; так как Sξ ⊆ ξ̂, то ξ ∈ V ξ

i , i ≤ nξ, следовательно, ξ ∈ Vξ. Но тогда

Ua ⊆
⋃

ξ∈Ua

Vξ.

Так как V ≺ Ua, то по следствию найдутся ξ0, . . . , ξn ∈ Ua такие, что V ≺⋃
i≤n

Vξi . Имеем f ∈ ⋂
i≤n

〈Sξi , a〉; пусть f ′ ∈ ⋂
i≤n

〈Sξi , a〉; тогда Uf ′
a ≥ ⋃

i≤n

Vξi ; дей-

ствительно, если
ξ′ ∈ Vξi =

⋂

j≤nξi

V ξi

j ,

то V ξi

j ∈ ξ̂′, j ≤ hξi ; Sξi ⊆ ξ̂ и тогда f ′(ξ̂′) ≥ a, ξ′Uf ′
a . Но Uf ′

a (≥ ⋃
i≤n

V ξi

j ) > V ,

следовательно, 〈{V }, a〉 ∈ W f ′
a ≤ W f ′ и r(f ′) ≥ f〈{V }, a〉, т.е. r(f ′) ∈ 〈{V }, a〉.

Итак,
r(

⋂

i≤n

〈Si, a〉) ⊆ 〈{V }, a〉
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и r – непрерывное отображение C(X∗, Y ) в себя такое, что f ¹ X̂ = r(f) ¹ X̂ и
r(f) ¹ X̂ = r(g) ¹ X̂ влечет r(f) = r(g) для любых f, g ∈ C(X∗, Y ).

По предложению 2 PEQU(X∗, Y ) изоморфен топологическому объекту.
Пусть Y – произвольное топологическое пространство. Тогда Y ∗ является

полной алгебраической решеткой; пусть r : C(X∗, Y ∗) → C(X∗, Y ∗) – непре-
рывное отображение, определенное выше (с Y ∗ вместо Y ). Отображение r удо-
влетворяет следующим двум условиям:

1) для любого непрерывного отображения f : X∗ → Y ∗ f ¹ X̂ = r(f) ¹ X̂;
2) для любых непрерывных отображений f, g : X∗ → Y ∗ r(f) = r(g) тогда и

только тогда, когда f ¹ X̂ = g ¹ X̂. Имеем δ(∼X∗
Y ∗ ) = {f | f ∈ C(X∗, Y ∗), f(X̂) ⊆

Ŷ }; тогда из 1) следует, что из f ∈ δ(∼X∗
Y ∗ ) следует, что r(f) ∈ δ(∼X∗

Y ∗ ) и
f ∼X∗

Y ∗ r(f). Условие 2 показывает, что r удовлетворяет всем условиям предло-
жения 2 и, следовательно, PEQU(X∗, Y ∗) изоморфен топологическому объек-
ту. Импликация 1. ⇒ 2 установлена.

Импликация 2. ⇒ 3 очевидна.
Установим теперь импликацию 3. ⇒ 1. Пусть PEQU(X∗,S) изоморфен топо-

логическому объекту; тогда по предложению 2 существует непрерывное отоб-
ражение r : C(X∗, S) → C(X∗, S) такое, что для любых f, g ∈ C(X∗,S)
f ¹ X̂ = r(f) ¹ X̂ и f ¹ X̂ = g ¹ X̂ влечет r(f) = r(g).

Покажем, что (TX ,⊆) – непрерывная решетка. Как отмечалось выше, нуж-
но установить, что U =

⋃{V | V ∈ TX , V ≺ U} для любого U ∈ TX ; это
равносильно тому, что для любых ξ ∈ U ∈ TX найдется V ∈ TX такое, что
ξ ∈ V и V ≺ U .

Пусть U ∈ TX и ξ0 ∈ U ; пусть f∗U ­ f〈{U},>〉; тогда f∗U ¹ X̂ = f̂U , где

f̂U (ξ̂) =

{
>, если ξ ∈ U,

⊥, если ξ 6∈ U.

Пусть gU ­ r(f∗U ); так как gU ¹ X̂ = f∗U ¹ X̂ = f̂U , то gU (ξ̂0) = >. Тогда
найдется окрестность 〈{V0, . . . , Vn},>〉, Vi ∈ TX , i ≤ n функции gU в C(X∗, S)
такая, что ξ0 ∈ V ­

⋃
i≤n

Vi. Заметим, что для любого ξ ∈ V gU (ξ̂) = >;
следовательно, V ⊆ U . Проверим, что V ≺ U . Пусть {Ui | i ∈ I}, Ui ∈ TX , i ∈
I – покрытие U(U =

⋃
i∈I

Ui). Пусть f ∈ C(X∗,S) – наименьшая функция такая,

что f({Ui}) = >, i ∈ I. Легко видеть, что f ¹ X̂ = f̂U = f∗U ¹ X̂; следовательно,
r(f) = gU . Так как gU ∈ 〈{V0, . . . , Vn},>〉, то r−1(〈{V0, . . . , Vn},>〉) открыто и
f ∈ r−1(〈{V0, . . . , Vn},>〉).

Пусть Sj – конечные подмножества TX , j ≤ k такие, что

f ∈ W ­
⋃

i≤n

〈Sj ,>〉 ⊆ r−1(〈{V0, . . . , Vn},>〉).

Пусть V ′
j ­

⋂
Sj =

⋂{U ′ | U ′ ∈ Sj}, j ≤ k. Покажем, что

V ′ ­
⋃

i≤k

V ′
j ⊇ V.

Действительно, пусть gW – наименьшая функция в W ; тогда, как легко видеть,
gw ¹ X̂ = f̂V ′ . Но r(gW ) ¹ X̂ = gW ¹ X̂ = f̂ ′V : r(gW ) ∈ 〈{V0, . . . , Vn},>〉 по
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выбору W ; следовательно,
V =

⋂

i≤n

Vi ⊆ V ′.

Далее, f ∈ 〈Sj , T 〉 влечет существование ij ∈ I такого, что Uij ∈ Sj , j ≤ k. Но
Uij

∈ Sj влечет, что V ′
j =

⋂
Sj ⊆ Uij

, j ≤ k;

V ⊆ V ′ =
⋃

j≤k

V ′
j ⊆

⋃

j≤k

Uij
.

Следовательно, V ≺ U , и импликация 3. ⇒ 1. установлена.
Теорема доказана. ¤
Пусть X удовлетворяет условиям теоремы 1, Y – произвольное топологи-

ческое пространство. Пусть r : C(X∗, Y ∗) → C(X∗, Y ∗) – отображение, по-
строенное в доказательстве импликации 1. ⇒ 2. Объекты (C(X∗, Y ∗) ∼X∗

Y ∗ ) и
(C(X∗, Y ∗), ∼X∗

Y ∗ ¹ r(δ(∼X∗
Y ∗ ))

2), категории PEQU изоморфны и R((C(X∗, Y ∗),
∼X∗

Y ∗ ¹ r(δ(∼X∗
Y ∗ ))

2)) – топологический объект категории EQU , представляющий
семейство морфизмов EQU(X, Y ).Существует естественное взаимнооднознач-
ное соответствие ρ0 между r(δ(∼X∗

Y ∗ )) и семейством C(X,Y ) всех непрерывных
отображений из X в Y ; оно является ограничением на r(δ(∼X∗

Y ∗ )) отображения
ρ : δ(∼X∗

Y ∗ ) → C(X,Y ), определенного так: если f ∈ δ(∼X∗
Y ∗ ) (т.е. f(X̂) ⊆ Ŷ ), то

g = ρ(f) – то единственное отображение из X в Y , для которого f̂ ξ) = ĝ(ξ)
для всех ξ ∈ X. Опишем явно топологию на C(X, Y ), которая превращает
отображение ρ0 в гомеоморфизм.

Теорема 2. Пусть X удовлетворяет условиям теоремы 1, Y – произвольное
топологическое пространство, тогда

1) Топология на C(X,Y ), индуцированная отображением ρ0, определена
предбазисом множеств вида
≺ V, U Â­ {f | f ∈ C(X,Y ), V ≺ f−1(U)}, V ∈ TX , U ∈ TY .
2) Если X является еще и уравновешенным (sober)(см.[2]) пространством,

то эта топология совпадает с компактно открытой топологией, т.е. топо-
логией, определенной предбазисом множеств вида 〈Q,U〉 ­ {f | f ∈ C(X, Y ),
Q ⊆ f−1(U)}, Q– компактное подмножество X, U ∈ TY .

1) Из определения отображения r видно, что для любых V0, . . . , Vn ∈ TX , U ∈
TY и f ∈ δ(∼X∗

Y ∗ ) имеет место эквивалентность (∗):
r(f) ∈ 〈{V0, . . . , Vn}, {U}〉 ⇔ существует i ≤ n такое, что Vi ≺ ρ(f)−1(U).
Заметим, что 〈{Vi}, {U}〉 ⊆ 〈{V0, . . . , Vn}, {U}〉, i ≤ n.
Из (∗), в частности, следует, что ρ−1

0 (≺ V,U Â) = 〈{V }, {U}〉∩r(δ(∼X∗
Y ∗ )), V ∈

TX , U ∈ TY ; т.е. ρ0 – непрерывное отображение из r(δ(∼X∗
Y ∗ ) (как подпростран-

ства C(X∗, Y ∗)) в C(X,Y ) с указанной в 1) топологией.
Далее, для любых V0, . . . , Vn ∈ TX , U0, . . . , Um ∈ TY справедливо равенство

〈{V0, . . . , Vn}, {U0, . . . , Um}〉 =
⋂

j≤m

〈{V0, . . . , Vn}, {Uj}〉.

Множества вида 〈{V0, . . . , Vn}, {U0, . . . , Um}〉 образуют базис топологии на
C(X∗, Y ∗). Указанное равенство вместе с эквивалентностью (∗) показывает,
что индуцированная на r(δ(∼X∗

Y ∗ )) топология пространством C(X∗, Y ∗) опреде-
ляется предбазисом множеств вида 〈{V }, {U}〉 ∩ r(δ(∼X∗

Y ∗ )), V ∈ TX , U ∈ TY .
Отсюда следует, что ρ0 – гомеоморфизм и утверждение 1) доказано.
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2) Теорема V-5.6. из [2] утверждает, что, если X является уравновешенным
пространством, то (TX ,⊆) является непрерывной решеткой тогда и только
тогда, когда X является локально компактным пространством, и в случае
выполнения этих условий: V ≺ U для V, U ∈ TX тогда и только тогда, когда
существует компактное множество Q такое, что V ⊆ Q ⊆ U .

Покажем, что в этом случае топология, на C(X, Y ), определенная в 1) сов-
падает с компактно открытой топологией. Пусть V ∈ TX , U ∈ TY и f ∈≺
V,U Â, т.е. V ≺ f−1(U); тогда найдется компактное множество Q такое, что
V ⊆ Q ⊆ f−1(U); следовательно, f ∈ 〈Q,U〉. Покажем, что 〈Q,U〉 ⊆≺ V,U Â;
пусть g ∈ 〈Q, U〉, тогда V ⊆ Q ⊆ g−1(U) и, следовательно, V ≺ g−1(U) и
g ∈≺ V,U Â. Итак, ≺ U,U Â открыто в компактно открытой топологии. Пусть
Q – компактное подмножество X, U ∈ TY и f ∈ 〈Q, U〉, т.е. Q ⊆ f−1(U). Так как
(TX ,⊆) – непрерывная решетка, то f−1(U) =

⋃{V | V ∈ TX , V ≺ f−1(U)}; так
как Q компактно, то найдутся V0, . . . , Vn ∈ TX такие, что Vi ≺ f−1(U), i ≤ n
и Q ⊆ V ­ V0

⋃
. . .

⋃
Vn. Но тогда V ≺ f−1(U), f ∈≺ V,U Â и очевидно,

≺ V, U Â⊆ 〈Q,U〉, т.е. 〈Q,U〉 открыто в топологии, определенной в 1). Следо-
вательно, эти топологии совпадают. Утверждение 2) доказано.

Теорема доказана. ¤
Пример 1. Пусть R – множество вещественных чисел в обычной топологии.

Так как R локально компактно, то для любого топологического пространства Y
пространство C(R, Y ) непрерывных отображений R в Y с компактно открытой
топологией представляет EQU(R, Y ).

Укажем еще широкий класс пространств, удовлетворяющих условиям тео-
ремы 1.

Теорема 3. Если X является α-пространством (определение в [4, 5]), то X
удовлетворяет условиям теоремы 1 и топология на C(X, Y ), определенная в
1) теоремы 2 совпадает с топологией поточечной сходимости.

Сначала заметим, что если X – α-пространство, то решетка (TX ,⊆) непре-
рывна, т.е. X удовлетворяет условиям теоремы 1. Это является следствием
теоремы 3 в [5] и следствием I-2.5 в [2]. Но может быть установлено и непо-
средственно. Пусть U ∈ TX , ξ ∈ TX ; тогда существует ξ0 ∈ U такой, что ξ0 ≺ ξ.
Тогда ξ ∈ Int ↑ ξ0; если Ui ∈ TX , i ∈ I и U ⊆ ⋃

i∈I

Ui, то существует i0 ∈ I такой,

что ξ0 ∈ Ui0 . Но тогда Int ↑ ξ0 ⊆↑ ξ0 ⊆ Ui0 , ξ ∈ Int ↑ ξ0 ≺ U .
Пусть X – α-пространство, Y – произвольное топологическое пространство

и f ∈≺ V, U Â, V ∈ TX , U ∈ TY ; V ≺ f−1(U). Так как X – α-пространство,
то f−1(U) =

⋃{Int ↑ ξ | ξ ∈ f−1(U)}; следовательно, существуют ξ0, . . . , ξn ∈
f−1(U) такие, что

V ⊆
⋃

i≤n

Int ↑ ξi.

Покажем, что
f ∈

⋂

i≤n

〈ξi, U〉 ⊆≺ V,U Â .

Так как ξi ∈ f−1(U), то f(ξi) ∈ U, f ∈ 〈ξi, U〉, i ≤ n, f ∈ ⋂
i≤n

〈ξi, U〉. Пусть

g ∈
⋂

i≤n

〈ξi, U〉;
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проверим, что V ≺ g−1(U). Пусть {Vj , | j ∈ J – открытое покрытие множества
g−1(U); так как g(ξi) ∈ U, ξi ∈ g−1(U), то найдется ji ∈ J такой, что ξi ∈
Vji

, i ≤ n; тогда ⋃

i≤n

Vji
⊇

⋃

i≤n

↑ ξi ⊇
⋃

i≤n

Int ↑ ξi ⊇ V ;

следовательно, V ≺ g−1(U) и g ∈≺ V, U Â. Итак, множества вида ≺ V,U Â
открыты в топологии поточечной сходимости.

Множества вида 〈ξ, U〉, ξ ∈ X, U ∈ TY являются частными случаями мно-
жеств вида 〈Q, U〉, Q – компактное подмножество X. Как показано в доказа-
тельстве утверждения 2) (уравновешенность X для этого не использовалась)
множества вида 〈Q, U〉 открыты в топологии из утверждения 1) теоремы 2.
Следовательно, эти топологии совпадают.

Теорема доказана. ¤
Пример 2. Декартова замкнутая категория B бифинитных областей с наи-

меньшим элементом (см. [6]) такова, что ее объекты являются α-пространствами,
а объект морфизмов из X в Y есть пространство C(X, Y ) непрерывных функ-
ций в топологии поточечной сходимости (см. [4]). Следовательно, теорема 3
влечет, что

категория B является полной поддекартово замкнутой подкатегорией ка-
тегории EQU ,

что отвечает и на вопрос 2 из [1].
Так как FS-области, введенные А.Юнгом (определение см. в [2], являются

α-пространствами, что легко следует из определения и леммы II-2.16 в [2], то
как и выше:

категория FS-областей является полной поддекартово замкнутой подка-
тегорией категории EQU .

Пример 3. Те же соображения, что и выше, показывают, что категория
A0-пространств A0 (см. [7]) является полной поддекартово замкнутой под-
категорией категории EQU .

В [4] автор определил понятие b0-пространства (грубо говоря, это не обя-
зательно полная бифинитная область) и отметил декартову замкнутость ка-
тегории всех таких пространств. Если ретракты b0-пространств назвать B0-
пространствами, то категория B0-пространств B0 будет декартово замкнутой
категорией, состоящей из α-пространств и такая, что объект морфизмов в B0

из X в Y есть пространство C(X, Y ) всех непрерывных отображений из X в Y
в топологии поточечной сходимости. Следовательно, справедливо

Предложение 3. Категории B, cB (см. [6]) и A0 являются полными подде-
картово замкнутыми подкатегориями категории B0, категория B0 является
полной поддекартово замкнутой подкатегорией категории EQU .

В соответствии с пожеланием рецензента укажем соответствие полученных
результатов с исследованиями, посвященными вопросам существования пра-
вильной топологии на множестве C(X, Y ) всех непрерывных отображений из
топологического пространства X в топологическое пространство Y . Тополо-
гия T на C(X, Y ) правильная, если топологическое пространство CT (X, Y )(=
〈C(X, Y ), T 〉) представляет функтор

C( ×X, Y )(∀Z(C(Z ×X,Y ) ∼ C(Z,CT (X,Y )).
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Пространство X называется экспоненциируемым [2], если для любого про-
странства Y на C(X,Y ) существует правильная топология.

Приведем характеризацию экспоненциируемых пространств из [2]:

ТЕОРЕМА II-4.12. Для пространства X следующие свойства эквива-
лентны:

(1) Решетка (TX ,⊆) всех открытых множеств пространства X является
непрерывной;

(2) Пространство X экспоненциируемо (в категории TOP0).
(3) Функтор ×X сохраняет фактор отображения.
Замечание. Как отмечено в [2], эта теорема по существу установлена в работе

[8].
Если использовать следующее
Наблюдение. Если K0 – полная подкатегория категории K, F : K → Set

– функтор, представимый объектом X из K0, то функтор F ¹ K0 : K0 → Set
представим тем же объектом X,

то импликация 1. ⇒ 2. теоремы 1 из настоящей работы влечет импликацию
1. ⇒ 2. теоремы II-4.12 из [2].

Это же наблюдение показывает, что из теоремы 2 настоящей работы следует
предложение 5.11 из работы [9].

Возникает естественная
Проблема. Влечет ли существование правильной топологии T на C(X, Y )

то, что EQU(X, Y ) изоморфен топологическому объекту?
Заметим, что в случае положительного ответа (для конкретных X,Y ∈

TOP0) имеем EQU(X, Y ) ∼ 〈CT (X,Y ), idC(X,Y )〉.
Настоящая статья была написана в конце 90-х, но не была опубликована

(было намерение написать книгу по топологии, которая включала бы и этот
результат). Осенью 2009 года я решил ее опубликовать и запросил Д.Скотта о
том, не решен ли вопрос 2 из [1]. Д.Скотт переадресовал этот вопрос А.Бауэру
и А.Симпсону. 22 сентября 2009 года А.Симпсон ответил Д.Скотту и мне, что
положительный ответ на этот вопрос может быть получен для счётно бази-
руемых пространств с использованием промежуточной категории так называ-
емых qcb-пространств и результатов работ [10, 11]. Я благодарен Д.Скотту и
А.Симпсону за полученные разъяснения.
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