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УСРЕДНЕНИЕ В ЗАДАЧАХ НЕЛИНЕЙНОЙ ДИФФУЗИИ

С.А. ГРИЦЕНКО

Abstract. The problem of diffusion and slow convection of admixtures
in the absolutely rigid porous medium is considered. The Stokes equations
for the compressible viscous fluid which occupies the porous space and
convective diffusion equation are the base equations. Viscous of fluid is
depends on the concentration of admixture. Numerical simulations on
a such model are unrealistic due to the fact that its main differential
equations involve non-smooth oscillatory coefficients, both big and small,
under the differentiation operators. The rigorous justification is fulfilled
for homogenization procedures as the dimensionless size of the pores
tends to zero, while the porous body is geometrically periodic. As the
results, we derive the nonlinear system consisting of Darcy’s equations
of filtration, where viscous of fluid depends on the concentration of
admixture, and homogenized convective diffusion equation.

Keywords: homogenization, nonlinear diffusion, compressible viscous
fluid.

1. Введение и постановка задачи

В работе рассматривается задача о диффузии и медленной конвекции при-
месей в абсолютно упругой пористой среде. Базовыми уравнениями являют-
ся уравнения Стокса для сжимаемой вязкой жидкости, заполняющей поровое
пространство, и конвективное уравнение диффузии. Вязкость жидкости за-
висит от концентрации примеси. Изучаемая модель чрезвычайно трудна для
численной реализации из-за наличия в уравнениях очень малых быстро ос-
циллирующих коэффициентов. Предлагается строгий вывод усредненной мо-
дели, уже не содержащей этих малых коэффициентов. Результатом является
нелинейная система, состоящая из уравнений фильтрации Дарси, в которых
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вязкость жидкости зависит от концентрации примеси, и усредненного конвек-
тивного уравнения диффузии.

Пусть ограниченная связная область Ω ∈ R3 с липшицевой границей есть
периодическое повторение элементарной ячейки Y ε = εY , где Y = (0, 1)3, Ys

— твердая часть Y , Yf — жидкая часть, γ = ∂Yf

⋂
∂Ys. Пусть поровое про-

странство Ωε есть периодическое повторение элементарной ячейки εYf , твер-
дый скелет Ωε

s есть периодическое повторение элементарной ячейки εYs, гра-
ница Γε = ∂Ωε\∂Ω — периодическое повторение в Ω границы εγ.

В безразмерных (не отмеченных звездочкой) переменных

x∗ = xL, t∗ = tτ, v∗ = vL, F∗ = Fg, p∗ = pp0

изучаемая система уравнений для скорости жидкости ṽε(x, t), давления p̃ε(x, t)
и концентрации примеси c̃ε(x, t) в области Ωε × (0, T ) состоит из уравнений
Стокса, описывающих движение слабосжимаемой вязкой жидкости, в которых
кинематическая вязкость жидкости зависит от концентрации примеси:

ατ
∂ṽε

∂t
= div (αµµ(c̃ε)∇ṽε + (ανdiv ṽε − p̃ε)I) + F, (1)

∂p̃ε

∂t
+ αpdiv ṽε = 0, (2)

и конвективного уравнения диффузии:

∂c̃ε

∂t
+ ṽε∇c̃ε = αD ∆c̃ε. (3)

На границе Γε выполняется однородное условие Дирихле для скорости жидко-
сти

ṽε(x, t) = 0, x ∈ Γε, (4)
и однородное условие Неймана для концентрации примеси

∂c̃ε(x, t)
∂n

= 0, x ∈ Γε. (5)

Задача замыкается начальными условиями:

ṽε(x, 0) = 0, p̃ε(x, 0) = 0 при x ∈ Ωε, (6)

c̃ε(x, 0) = c0(x), 0 6 c0(x) 6 c(0) 6 1, при x ∈ Ωε. (7)
где n — единичный вектор внешней нормали к Γ, µ(c) – безразмерная вязкость,
F – заданная плотность внешних массовых сил, I – единичная матрица.

Безразмерные положительные постоянные αi (i = τ, ν, µ, . . .) определяются
формулами

ατ =
L

gτ2
, αν =

ν

τLgρ0
, αµ =

2µ0

τLgρ0
, αp =

p0

Lgρ0
, αD =

Dτ

L
,

где L – характерный макроскопический размер (диаметр рассматриваемой фи-
зической области), τ – характерное время данного физического процесса, ρ0 –
средняя плотность воздуха при атмосферном давлении, g – ускорение силы
тяжести, p0 – атмосферное давление, µ0 – вязкость жидкости при нулевой кон-
центрации примеси, D – коэффициент диффузии.

Рассматриваемая математическая модель содержит малый параметр ε, рав-
ный отношению среднего размера пор l к размеру L рассматриваемой области:
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ε = l/L. Поэтому естественным упрощением, сохраняющим основные свойства
задачи, является нахождение предельных режимов в точной модели при ε → 0.

Чтобы говорить о предельном переходе при ε → 0, необходимо рассматри-
вать все функции и последовательности в фиксированной области (Ωε зависит
от ε). Поэтому мы продолжаем все функции из области Ωε ⊂ Ω в Ω. Ско-
рость ṽε и давление p̃ε продолжаются в Ω тривиально – нулем (на границе
Γε ṽε = 0).

Положим vε =
{

0, y ∈ Ωε
s,

ṽε, y ∈ Ωε. Аналогично, pε =
{

0, y ∈ Ωε
s,

p̃ε, y ∈ Ωε.
Концентрацию c̃ε можно продолжить, используя известные методы продол-

жения, но при этом для продолженной функции теряется важное для нас
свойство — ограниченность производной ∂cε/∂t в некотором сопряженном про-
странстве, необходимое для предельного перехода при ε → 0. Поэтому мы дела-
ем искусственное вспомогательное предположение о наличии малой диффузии
в твердом скелете, характеризующейся малым параметром λ > 0:

∂cε
λ

∂t
+ vε

λ∇cε
λ = div

(
(χεαD + λ(1− χε))∇cε

λ

)
, x ∈ Ω. (3′)

Здесь χε(x) = χ(x/ε) — характеристическая функция Ωε в Ω, χ(y) — характе-
ристическая функция Yf в Y :

χ(y) =
{

0, y ∈ Ys,
1, y ∈ Yf .

Таким образом, вместо уравнения (3) мы рассмотрим уравнение (3’), вместо
краевого условия (5) — краевое условие

∂cε
λ(x, t)
∂n

= 0, x ∈ S, (5′)

а затем выполним предельный переход при λ → 0.

2. Основные результаты

Для фиксированных ε > 0 и λ > 0 справедлива следующая

Теорема 1. Задача (1),(2),(3’),(4),(5’),(6),(7) имеет хотя бы одно обобщенное
решение и для него справедливы оценки:

max
0<t<T

∫

Ω

(ατ |vε
λ|2 +

1
αp

pε
λ
2) dx +

∫

ΩT

(
αν(divvε

λ)2 + αµ|∇vε
λ|2

)
dx dt 6 M2F 2,

(2.1)

max
0<t<T

∫

Ω

|cε
λ|2 dx +

∫

ΩT

(χεαD + λ(1− χε))|∇cε
λ|2 dx dt 6 M2F 2, (2.2)

где M – постоянная, не зависящая от ε, λ и F 2 =
∫
ΩT
|F(x, t)|2 dx dt.

Пусть выполнено следующее предположение:

Предположение 1. При ε → 0

αµ → 0, ατ → 0,
αµ

ε2
→ µ1, 0 < µ1 < ∞,

αν → ν0, 0 < ν0 < ∞,

αp → η0, 0 < η0 < ∞,

αD → D0, 0 < D0 < ∞.
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Для фиксированного положительного числа λ справедлива

Теорема 2. Решение (vε
λ, pε

λ, cε
λ) задачи (1) – (7) сходится при ε → 0 к реше-

нию (vλ, pλ, cλ) усредненной системы:

vλ = B(f)

(
1

µ(cλ)
(−∇qλ

m
+ F

))
,

qλ = pλ +
ν0

η0

∂pλ

∂t
,

∂pλ

∂t
+ η0divvλ = 0,

∂cλ

∂t
+ vλ · ∇cλ = div (B(c)

λ ∇cλ),





(2.3)

где B(f) и B(c)
λ — симметричные и положительно определенные матрицы,

вычисляемые по формулам (5.10) и (5.17).

Теорема 3. Пусть (vλ, pλ, cλ) есть решение системы (2.3) для фиксирован-
ного λ > 0. Тогда при λ → 0 функции vλ, pλ, cλ сходятся к решению (v, p, c)
усредненной системы:

v = B(f)

(
1

µ(c)
(−∇q

m
+ F

))
,

q = p +
ν0

η0

∂p

∂t
,

∂p

∂t
+ η0divv = 0,

∂c

∂t
+ v · ∇c = div (B(c)

0 ∇c),





(2.4)

где матрица B(c)
0 определяется формулой (5.17) для λ = 0.

3. Вспомогательные сведения

В дальнейшем мы будем систематически использовать метод двухмасштаб-
ной сходимости Нгуетсенга, приведем его определение.

Определение 1. Двухмасштабная сходимость.
Последовательность {ϕε} ⊂ L2(ΩT ) называется двухмасштабно сходящей-

ся к пределу ϕ ∈ L2(ΩT × Y ), если для любой гладкой 1-периодической по y
функции σ(x, t, y) имеет место предельное соотношение

lim
ε→0

∫

ΩT

ϕε(x, t)σ(x, t,x/ε)dxdt =
∫

ΩT

∫

Y

ϕ(x, t,y)σ(x, t,y)dydxdt.(1)

Существование и основные свойства двухмасштабно сходящихся последова-
тельностей утверждаются следующей теоремой:

Теорема 4. (теорема Нгуетсенга)
1. Из любой ограниченной последовательности в L2(ΩT ) можно выбрать

подпоследовательность, двухмасштабно сходящуюся к некоторому пределу
ϕ ∈ L2(ΩT × Y ).

2. Пусть последовательности {ϕε} и {ε∇xϕε} равномерно ограничены в
L2(ΩT ). Тогда существуют 1-периодическая по y функция ϕ(x, t, y) и подпо-
следовательность из {ϕε} такие, что ϕ,∇yϕ ∈ L2(ΩT × Y ), а

{ϕε} → ϕ, {ε∇xϕε} → ∇yϕ двухмасштабно.

3. Пусть последовательности {ϕε} и {∇xϕε} равномерно ограничены в L2(ΩT ).
Тогда существуют функции ϕ ∈ L2(ΩT ), ψ ∈ L2(ΩT × Y ) и подпоследователь-
ность из {ϕε} такие, что ψ 1-периодична по y, ∇yψ ∈ L2(ΩT × Y ), а
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{ϕε} → ϕ, {∇xϕε} → ∇xϕ(x, t) +∇yψ(x, t, y) двухмасштабно.

Следствие 1. Пусть σ ∈ L2(Y ) и σε(x) означает σ(x/ε). Пусть последова-
тельность {ϕε} ⊂ L3(ΩT ) двухмасштабно сходится к некоторому пределу
ϕ ∈ L2(ΩT × Y ). Тогда последовательность {σεϕε} двухмасштабно сходится
к σϕ.

4. Доказательство теоремы 1

Подробное доказательство теоремы изложено в работе [3], здесь приводится
его краткая схема.

Определяем множество M как

M = {c̄ ∈ C(ΩT ) | 0 6 c̄ 6 1}.
Для c̄ ∈ M функция u(x, t) находится как обобщенное решение задачи:

ατ
∂u
∂t

= div (αµµ(c̄)∇u + (ανdivu− q)I) + F, (4.0)

∂q

∂t
+ αpdivu = 0, (4.1)

u(x, t) = 0 при x ∈ Γ, u(x, 0) = 0 при x ∈ Ω, (4.2)
Решение задачи (4.0) – (4.2) существует, единственно и для него справедлива
оценка

max
0<t<T

∫

Ω

(ατ |u|2 +
1
αp

q2) dx +
∫

ΩT

(
αν(divu)2 + αµ|∇u|2

)
dx dt 6 MF 2. (4.3)

Далее вводится нормированное пространство N = W1,0
2 (ΩT ) с нормой

(‖u‖N)2 =
∫

ΩT

|∇u|2 dx dt.

Решение задачи (4.0) – (4.2) определяет непрерывный оператор A : M → N
такой, что u = A(c̄).

Полученное решение u и выражение D(x) = αD χ(x) + λ
(
1 − χ(x)

)
сглажи-

ваются при помощи следующих операторов:

wh(x, t) = M(h)(u(x, t)) =
1
h4

∫ t+h

t

dτ

∫

R3
η

( |x− y|
h

)
u(y, τ) dy, wh(x, t) ∈ C∞(ΩT ),

Dh(x) = M1
(h)(D(x)) =

1
h3

∫

R3
η

( |x− y|
h

)
D(y) dy,

где усредняющее ядро η(s) ∈ C(R3) – четная неотрицательная функция, η(s) =
0, если |s| > 1,

∫
|s|61

η(|s|) ds = 1,

и определяется функция ch(x, t) как решение задачи:
∂ch

∂t
+ wh∇ch = div ((χεαD + λ(1− χε))∇ch) (4.4)

∂ch(x, t)
∂n

= 0 при x ∈ S, ch(x, 0) = M1
(h)(c0(x)), при x ∈ Ω, (4.5)

где

M1
(h)(c0(x)) =

1
h3

∫

R3
η

( |x− y|
h

)
c0(y) dy.
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Задача (4.4) – (4.5) как задача с бесконечно дифференцируемыми коэффи-
циентами имеет единственное бесконечно дифференцируемое решение ch(x, t),
для которого справедлив принцип максимума:

0 6 ch(x, t) 6 max c0(x) 6 c(0) 6 1. (4.6)

Таким образом, для каждой фиксированной функции u ∈ N существует един-
ственная функция c̄h ∈ M, то есть определен оператор B : N → M, такой
что ch = B(u), и этот оператор непрерывен.

Наконец, определяется оператор

Φ : M → M,

ch = Φ(c̄) = B (A(c̄)) ,

который непрерывен как суперпозиция непрерывных операторов, и более того,
по теореме Арцела он вполне непрерывен и отображает выпуклое множество
M в себя, то есть по теореме Шаудера о неподвижной точке существует хотя
бы одна неподвижная точка этого оператора.

Пусть c∗h = Φ(c∗h) – неподвижная точка оператора Φ, и пусть u∗h = A(c∗h).
Тогда

ατ
∂u∗h
∂t

= div (αµµ(c∗h)∇u∗h + (ανdivu∗h − q∗h)I) + F, (4.7)

∂q∗h
∂t

+ αpdivu∗h = 0, (4.8)

∂c∗h
∂t

+ M(h)(u∗h) · ∇c∗h = div (Dh∇c∗h), (4.9)

u∗h(x, t) = 0 при x ∈ S, u∗h(x, 0) = 0, (4.10)
∂c∗h(x, t)

∂n
= 0 при x ∈ S, c∗h(x, 0) = M(h)

1 (c0(x)) при x ∈ Ω. (4.11)

Далее выполняется предельный переход при h → 0 и доказывается, что
решение (vε

λ, pε
λ, cε

λ) исходной задачи (1),(2),(3’),(4),(5’) – (7) есть предел при
h → 0 решений (u∗h, q∗h, c∗h) задачи (4.7) – (4.11), которые зависят еще от ε и λ.

5. Доказательство теоремы 2

Фиксируем положительное число λ.
Используя оценку (8):

∫

ΩT

|∇vε
λ|2 dx dt 6 MF 2

αµ

и неравенство Фридрихса-Пуанкаре в периодической структуре [2,с.653]:∫

Ωε
T

|vε
λ|2 dx dt 6 Cε2

∫

Ωε
T

|∇vε
λ|2 dx dt,

получаем ∫

ΩT

|vε
λ|2 dx dt 6 Cε2 MF 2

αµ
= M1F

2.

Таким образом, из последовательностей {vε
λ}, {div (vε

λ)}, {pε
λ} можно из-

влечь подпоследовательности, слабо сходящиеся в L2(ΩT ) и двухмасштабно в
L2(ΩT × Y ):

vε
λ ⇀ vλ, div (vε

λ) → divvλ, pε
λ ⇀ pλ слабо в L2(ΩT ),
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vε
λ → Vλ(x, t, y), pε

λ → Pλ двухмасштабно в L2(ΩT × Y ),

vλ = 〈Vλ〉Y =
∫

Y

Vλ(x, t, y) dy, pλ = 〈Pλ〉Y .

Кроме того, если положим

qε
λ = pε

λ +
αν

αp

∂pε
λ

∂t
,

то уравнение (1) примет вид

ατ
∂vε

λ

∂t
= div (αµµ(cε

λ)∇vε
λ)−∇qε

λ + F, (1′)

тогда

qε
λ ⇀ qλ = pλ +

ν0

η0

∂pλ

∂t
слабо в L2(ΩT ),

qε
λ → Qλ(x, t, y) = Pλ +

ν0

η0

∂Pλ

∂t
двухмасштабно в L2(ΩT ×Y ), qλ = 〈Qλ〉Y .

Оценка (9) позволяет нам из последовательности {cε
λ} извлечь подпосле-

довательность, слабо сходящуюся в W1,0
2 (ΩT ). Имеем компактное вложение

W1
2(Ω) ⊂ L2(Ω) ⊂ (W1

2(Ω))∗. Обозначим W = {v|v ∈W1,0
2 (ΩT ); ∂v/∂t ∈ (W1

2(Ω))∗}.
Очевидно, что cε

λ ∈ W . По теореме о компактности [4,с.70, теорема 5.1 ] вло-
жение W ⊂ L2(ΩT ) компактно. Это означает, что

cε
λ → cλ сильно в L2(ΩT ).

Кроме того,

∇cε
λ → ∇cλ +∇yCλ(x, y, t) двухмасштабно в L2(ΩT × Y ).

Далее доказательство теоремы основывается на сформулированных ниже
леммах. Доказательство лемм 1 — 3 приведено в работе [2].

Справедливы следующие утверждения:

Лемма 1.

Pλ(x, t, y) =
1
m

pλ(x, t)χ(y), Qλ(x, t, y) =
1
m

qλ(x, t)χ(y), (5.1)

где

m =
∫

Y

χ(y) dy;

∂pλ

∂t
+ η0 div vλ = 0, (5.2)

vλ · n = 0 при x ∈ S. (5.3)

Лемма 2. Функция Vλ(x, t, y) есть решение периодической краевой задачи:

µ1∆yVλ −∇R + z = 0, (5.5)

div Vλ = 0, y ∈ Yf , (5.6)

Vλ|γ = 0, (5.7)

где z(x, t) =
1

µ(cλ)
(−∇qλ

m
+ F), (5.8)
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Лемма 3. Функция vλ(x, t) =
∫

Yf
Vλ(x, t, y) dy есть решение усредненного

уравнения
vλ = B(f)z, (5.9)

где B(f) = 〈
3∑

i=1

V(i) ⊗ ei〉Yf
, (5.10)

а функции V(i) определяются из периодических краевых задач:

µ1∆y V(i) −∇R(i) + ei = 0,

div V(i) = 0, y ∈ Yf ,

V(i)|γ = 0. (5.11)

Лемма 4. Функция Cλ(x, t, y) является решением периодической краевой за-
дачи

divy

(
D(λ)(y)

(∇cλ(x, t) +∇yCλ(x, t, y)
))

= 0, y ∈ Y, (5.12)

с условием нормировки ∫

Y

Cλ dy = 0,

где
D(λ)(y) = χ(y)D0 + λ

(
1− χ(y)

)
.

Доказательство. Индекс λ опускаем. Пользуясь равенством vε·∇cε = div (vεcε)−
cε div vε, запишем уравнение (3’) в следующем виде:

∂cε

∂t
+ div (vεcε)− cε div vε = div

((
χεαD + λ(1− χε)

)∇cε

)
, (5.13)

затем умножим его на произвольную гладкую функцию ϕ(x, t), такую что ϕ(x, 0) =
ϕ(x, T ) = 0, и проинтегрируем по области ΩT :∫

ΩT

(
−cε ∂ϕ

∂t
−cεvε·∇ϕ−cεdiv vεϕ+

(
χεαD+λ(1−χε)

)∇cε·∇ϕ

)
dx dt = 0, (5.14)

Пробную функцию ϕ выберем в виде:

ϕ(x, t) = εh(x, t)Φ(x/ε),

тогда (5.14) примет вид:
∫

ΩT

(
−cε ε

∂h

∂t
Φ− vεcε(εΦ∇h + h∇yΦ)− cεdivvεεh(x, t)Φ+

+
(
χεαD + λ(1− χε)

)∇cε · (εΦ∇h + h∇yΦ)
)

dx dt = 0.

Переходя к двухмасштабным пределам при ε → 0 и учитывая, что cε → c
сильно в L2(ΩT ), получаем:∫

ΩT

(−vεcε(εΦ∇h + h∇yΦ)
)
dx dt →

∫

ΩT

∫

Y

(−c hV · ∇yΦ(y)
)
dy dx dt,

∫

ΩT

(
χεαD + λ(1− χε)

)∇cε · (εΦ∇h + h∇yΦ) dx dt →
∫

ΩT

∫

Y

(
χD0 + λ(1− χ)

)
(∇c +∇yC) · h∇yΦ) dy dx dt,
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остальные слагаемые стремятся к нулю, в итоге∫

Y

(−Vc + D(λ)(y)(∇c +∇yC)
) · ∇yΦ dy = 0

для любой 1-периодической функции Φ, поэтому выполнив интегрирование по
частям, получаем

divy

(−Vc + D(λ)(y)(∇c +∇yC)
)

= 0.

Равенство divyV = 0 приводит к требуемому микроскопическому уравнению:

divy

(
D(λ)(y)(∇c +∇yC)

)
= 0, y ∈ Y.

¤

Лемма 5. Функции cλ(x, t) и Cλ(x, t, y) являются решениями макроскопиче-
ского уравнения

∂cλ

∂t
+∇cλ · vλ = divx

(〈D(λ)〉Y∇cλ + 〈D(λ)∇yC〉Y
)

(5.15)

Доказательство. Индекс λ опускаем.
Переходя в интегральном тождестве (5.14 ) к слабым и двухмасштабным

пределам при ε → 0, получаем
∫

ΩT

−cε ∂ϕ

∂t
dx dt ⇀ −

∫

ΩT

c
∂ϕ

∂t
dx dt,

∫

ΩT

−cεvε · ∇ϕ dx dt ⇀ −
∫

ΩT

cv · ∇ϕdx dt,

∫

ΩT

−cεdiv vεϕ dx dt ⇀ −
∫

ΩT

c divv ϕdx dt,

∫

ΩT

(
χεαD+λ(1−χε)

)∇cε·∇ϕdx dt →
∫

ΩT

∫

Y

D(λ)(y)
(∇c(x, t)+∇yC(x, t, y)

)·∇ϕdy dx dt =

=
∫

ΩT

〈D(λ)〉Y∇c · ∇ϕdx dt +
∫

ΩT

〈D(λ)∇yC〉Y · ∇ϕdx dt,

∫

ΩT

(
∂c

∂t
+div (vc)− c div v− divx

(〈D(λ)〉Y∇c+ 〈D(λ)∇yC〉Y
))

ϕdx dt = 0 ∀ϕ,

а следовательно, выполняется макроскопическое уравнение:
∂c

∂t
+∇c · v − divx

(〈D(λ)〉Y∇c + 〈D(λ)∇yC〉Y
)

= 0.

¤

Лемма 6. Функция cλ(x, t) есть решение усредненного уравнения
∂cλ

∂t
+∇cλ · vλ = divx

(
Bλ

(c)∇cλ

)
, (5.16)

где

Bλ
(c) = 〈D(λ)〉Y I+

3∑

i=1

〈D(λ)(∇C
(i)
λ ⊗ ei〉Y , (5.17)

а функции C
(i)
λ (x, t, y) определяются из следующих периодических краевых за-

дач:
divy

(
D(λ)(∇C

(i)
λ + ei)

)
= 0, y ∈ Y (5.18.i.λ)
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с условием нормировки ∫

Yf

C
(i)
λ dy = 0.

При этом для λ = 0

divy

(
χ(y)D0(∇C

(i)
0 + ei)

)
= 0,

∫

Yf

C
(i)
0 dy = 0, y ∈ Y. (5.18.i.0)

Доказательство. Представим функции ∇c и C в следующем виде:

∇c(x, t) =
3∑

i=1

αi(x, t)ei, C(x, t, y) =
3∑

i=1

C
(i)
λ (y)αi(x, t),

тогда из леммы 4

divy

(
D(λ)(y)

( 3∑

i=1

αiei +
3∑

i=1

∇C
(i)
λ αi

))
= 0,

или, что то же самое
3∑

i=1

αidivy

(
D(λ)(y)

(
ei +∇C

(i)
λ

))
= 0.

Очевидно, что функция C(x, t, y) есть решение (5.12), если C
(i)
λ есть решение

(5.18.i.λ).
Умножим (5.18.i.λ) на C

(i)
λ и проинтегрируем по области Y :

∫

Y

D(λ)(y)|∇C
(i)
λ (y)|2 dy = −

∫

Y

D(λ)(y)ei · ∇C
(i)
λ (y) dy,

тогда из неравенства Коши

| −
∫

Y

D(λ)ei · ∇C
(i)
λ dy| 6 1

2

∫

Y

D(λ)|∇C
(i)
λ |2 dy +

1
2

∫

Y

D(λ) dy,

и окончательно,∫

Y

D(λ)|∇C
(i)
λ |2 dy| 6

∫

Y

D(λ) dy = D0m + λ(1−m) = Mλ. (5.19)

Оценка (5.19) гарантирует однозначную разрешимость (5.12).
Далее,

C(x, t, y) =
3∑

i=1

C
(i)
λ (y)αi(x, t) =

3∑

i=1

C
(i)
λ ei · ∇c,

D(λ)(y)∇yC =
(
D(λ)(y)

3∑

i=1

∇yC
(i)
λ ⊗ ei

)∇c,

〈D(λ)(y)∇yC〉Y = 〈D(λ)(y)
3∑

i=1

∇yC
(i)
λ ⊗ ei〉Y∇c,

divx

(
〈D(λ)〉Y∇c+〈D(λ)∇yC〉Y

)
= divx

((〈D(λ)〉Y I+〈D(λ)

3∑

i=1

∇yC
(i)
λ ⊗ei〉Y

)∇c

)
=

= divx

(
B(c)

λ ∇c
)
,



62 С.А. ГРИЦЕНКО

где

B(c)
λ = 〈D〉Y I+ 〈D

3∑

i=1

∇yC
(i)
λ ⊗ ei〉Y .

¤

Лемма 7. Матрицы B(f) и B(c)
λ являются симметричными и положительно

определенными.

Доказательство. Индекс λ опускаем. Умножим уравнение (5.18.i.λ) на C(j) и
проинтегрируем по области Y :∫

Y

divy

(
D(∇C(i) + ei)

)
C(j) dy = 0,

−
∫

Y

(
D∇C(i) · ∇C(j) + Dei · ∇C(j)

)
dy = 0,

далее умножим на ξiηj и просуммируем по i и по j:
∫

Y

D

3∑

i=1

3∑

j=1

(∇C(i) · ∇C(j)ξiηj + ei · ∇C(j)ξiηj

)
dy = 0.

Обозначим
3∑

i=1

∇C(i)ξi ≡ C̃ξ,

3∑

i=1

∇C(i)ηi ≡ C̃η,

3∑

i=1

ξiei ≡ ξ,

3∑

i=1

ηiei ≡ η,

тогда в этих обозначениях∫

Y

(
D∇C̃ξ · ∇C̃η + D∇C̃ξ · η

)
dy = 0

или, что то же самое,∫

Y

(
D∇C̃ξ · ∇C̃η + D∇C̃η · ξ

)
dy = 0. (5.20)

(B(c)ξ) · η =
((〈D〉Y I+

3∑

i=1

〈D(∇C(i) ⊗ ei〉Y
)
ξ

)
· η =

= 〈D〉Y (ξ ·η)+
3∑

i=1

(
〈D(∇C(i)⊗ei〉Y ξ

)
·η = 〈D〉Y (ξ ·η)+

3∑

i=1

〈D∇C(i)(ei ·ξ)〉Y ·η =

= 〈D〉Y (ξ · η) +
3∑

i=1

〈D∇C(i)ξi〉Y · η = 〈D〉Y (ξ · η) + 〈D∇C̃ξ〉Y · η. (5.21)

Сложив (5.21) и (5.20), получаем

(B(c)ξ) · η = 〈D〉Y (ξ · η) + 〈D∇C̃ξ〉Y · η + 〈D∇C̃ξ · ∇C̃η〉Y + 〈D∇C̃η · ξ〉Y =

= 〈D(ξ · η)〉Y + 〈D∇C̃ξ · η〉Y + 〈D∇C̃ξ · ∇C̃η〉Y + 〈D∇C̃η · ξ〉Y =

= 〈D(η +∇C̃η) · (ξ +∇C̃ξ)〉Y .

При ξ = η имеем положительную определенность:

(B(c)ξ) · ξ > 0.

Симметричность и положительная определенность матрицы B(f) доказывается
аналогично. ¤
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6. Доказательство теоремы 3

Сходимость решения задачи (2.3) к решению задачи (2.4) определяется по-
ведением матрицы B

(c)
λ при λ → 0. По построению

B
(c)
λ = 〈D(λ)〉Y I+

3∑

i=1

〈D(λ)(∇C
(i)
λ ⊗ ei〉Y ,

где
D(λ) = D0χ(y) + λ(1− χ(y)).

Так как
lim
λ→0

D(λ) = D0χ(y),

то поведение матрицы B
(c)
λ при λ → 0, в свою очередь, определяется поведе-

нием ∇C
(i)
λ .

Оценка (5.19) и условие нормировки для C
(i)
λ обеспечивают слабую в W 1

2 (Yf )
и сильную в L2(Yf ) компактность последовательности {C(i)

λ } при λ → 0:

C
(i)
λ ⇀ C̃(i).

Кроме того,
∇C

(i)
λ ⇀ ∇C̃(i) при λ → 0 слабо в L2(Yf ).

Уравнение (5.18.i.λ) эквивалентно интегральному тождеству∫

Y

(
D(λ)(∇C

(i)
λ + ei)

) · ∇ϕdy = 0,

справедливому для произвольной гладкой периодической функции ϕ. Переходя
в нем к пределу при λ → 0 убеждаемся, что функция C̃(i) является решением
задачи (5.18.i.0). В силу единственности последней C̃(i) = C

(i)
0 . Таким образом

B
(c)
λ → B

(c)
0 при λ → 0. (6.1)

Положительная определенность матрицы B
(c)
0 дает неравенство:

(B(c)
0 · ξ) · ξ ≥ β0|ξ|2,

это же свойство справедливо и для матрицы B
(c)
λ :

(B(c)
λ · ξ) · ξ ≥ 1

2
β0|ξ|2, (6.2)

для достаточно малых λ, 0 ≤ λ ≤ λ0.
Далее воспользуемся ранее полученными оценками vλ, pλ, cλ, не зависящи-

ми от параметра λ:
∫

ΩT

(
|vλ|2 + p2

λ +
(∂pλ

∂t

)2 + (div vλ)2
)

dx dt 6 M2F 2, (6.3)

0 6 cλ(x, t) 6 c(0). (6.4)
Равномерная по параметру λ оценка∫

ΩT

|∇cλ|2 dx dt 6 M2(F 2 + |c(0)|2), (6.5)

следует из уравнения диффузии в (2.3), оценок (6.3), (6.4) и неравенства (6.2).
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Как и выше, полученные оценки позволяют выделить слабо сходящиеся в
L2(ΩT ) подпоследовательности:

vλ ⇀ v, pλ ⇀ p,
∂pλ

∂t
⇀

∂p

∂t
, divvλ ⇀ divv, ∇cλ ⇀ ∇c, (6.6)

и сильно сходящуюся в L2(ΩT ) подпоследовательность

cλ → c. (6.7)

Теорема будет доказана, если после предельного перехода в уравнениях(2.3)
при λ → 0 мы придем к системе уравнений (2.4).

Предельный переход в уравнениях для vλ очевиден.
Для предельного перехода в уравнении диффузии в (2.3) для cλ запишем

его в форме:∫

ΩT

(
cλ

(∂ξ

∂t
+∇ξ · vλ + ξdivvλ

)− (
B(c)

0 · ∇cλ

) · ∇ξ

)
dx dt =

∫

ΩT

((
B(c)

λ − B(c)
0

) · ∇cλ

)
· ∇ξ dx dt.

В силу (6.1) и (6.3) – (6.7) это интегральное тождество сходится при λ → 0
к тождеству ∫

ΩT

(
c
(∂ξ

∂t
+∇ξ · v + ξdivv

)− B(c)
0 ∇c · ∇ξ

)
dx dt = 0,

что эквивалентно уравнению диффузии в усредненной системе (2.3).
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