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О ПРИНЦИПЕ КОМПАКТНОСТИ В ПЕРЕМЕННОМ
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Abstract. We consider the compactness principle in the variable
space Lp related to a periodic Borel measure. It is supposed that
the periodic Borel measure describes a periodic singular or composite
structure. We prove the compactness principle for periodic grids,
box structures, involving Cantor’s constructions, and corresponding
composite structures.
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1. Введение

Пусть Ω — ограниченная область в RN . Согласно классической теореме вло-
жения, любая последовательность функций uε ∈ C∞0 (Ω), ограниченная вместе
со своим градиентом ∇uε в пространстве Lp(Ω), компактна в смысле сильной
сходимости в Lp(Ω). Представляет интерес выяснение условий выполнения та-
кого принципа компактности, если вместо классического пространства Lp(Ω)
рассматривать переменное пространство Lp(Ω, dµε), связанное с ε- периодиче-
ской борелевской мерой µε. При этом предполагается, что мера µε характе-
ризует ε-периодическую сингулярную или составную структуру в RN . Такой
подход к описанию периодических структур был предложен В.В. Жиковым в
связи с исследованием задач усреднения на периодических структурах [1]. Дан-
ная работа является продолжением работы [2], в которой был доказан принцип
компактности в переменном пространстве L2 для ряда периодических сингу-
лярных и тонких структур.

Shumilova, V.V., On the compactness principle in variable space Lp for periodic
composite structures.
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2. Описание периодических структур

Пусть µ — неотрицательная периодическая борелевская мера в RN , норми-
рованная условием µ(¤) = 1, где ¤ = [0, 1)N — ячейка периодичности. Будем
предполагать, что мера µ описывает некоторую периодическую структуру F ,
то есть µ(¤\F ) = 0. При этом структура F будет называться составной, если
мера µ является суммой периодических борелевских мер, носители которых
характеризуют составные компоненты структуры F . В качестве модельных
составных компонент рассмотрим следующие сингулярные структуры с харак-
теризующими их “естественными” мерами.

(i) Пусть S — периодическая сетка, состоящая из двух систем параллель-
ных прямых в R2, пересекающихся друг с другом под углом 45◦ или
90◦. Естественной мерой на S будем считать периодическую нормиро-
ванную меру, сосредоточенную на S и пропорциональную там линейной
мере Лебега.

(ii) Пусть µ0 — естественная мера на периодическом канторовом множестве
в R [3]. Тогда периодическая канторова сетка характеризуется мерой
dµ1 = dµ0(x1)×dx2+dx1×dµ0(x2), а периодическая канторова ящичная
структура — мерой dµ1 = dµ0(x1) × dx2 × dx3 + dx1 × dµ0(x2) × dx3 +
dx1 × dx2 × dµ0(x3).

(iii) Пусть S — периодическая ящичная структура, состоящая из трех вза-
имно ортогональных систем параллельных граней в R3. Естественной
мерой на S будем считать периодическую нормированную меру, сосре-
доточенную на S и пропорциональную там плоской мере Лебега.

3. Принцип компактности и один общий результат

Введем меру µε равенством

µε = εNµ(ε−1B) для любого борелевского множества B ⊂ RN .

Известно, что мера µε имеет период ε и слабо сходится к мере Лебега: dµε ⇀ dx
при ε → 0 [4].

Пусть Ω — ограниченная область в RN . Рассмотрим последовательность
функций uε(x) из C∞0 (Ω), ограниченную в пространстве Lp(Ω, dµε) (p > 1), то
есть

lim sup
ε→0

∫

Ω

|uε|pdµε < ∞.

Тогда слабая сходимость uε ⇀ u в Lp(Ω, dµε) означает, что u ∈ Lp(Ω) и

lim
ε→0

∫

Ω

uεϕdµε =
∫

Ω

uϕdx ∀ϕ ∈ C∞0 (Ω).

Сильная сходимость uε → u в Lp(Ω, dµε) означает, что u ∈ Lp(Ω) и

lim
ε→0

∫

Ω

uεvεdµε =
∫

Ω

uvdx как только vε ⇀ v в Lp/(p−1)(Ω, dµε).

В дальнейшем будут использоваться следующие свойства слабой и сильной
сходимости в Lp(Ω, dµε) [4]:

(i) любая последовательность, ограниченная в Lp(Ω, dµε), компактна в
смысле слабой сходимости;
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(ii) полунепрерывность снизу: если uε ⇀ u в Lp(Ω, dµε), то

lim inf
ε→0

∫

Ω

|uε|pdµε ≥
∫

Ω

|u|pdx;

(iii) сильная сходимость uε → u в Lp(Ω, dµε) складывается из слабой сходи-
мости uε ⇀ u и равенства

lim
ε→0

∫

Ω

|uε|pdµε =
∫

Ω

|u|pdx.

Будем говорить, что имеет место принцип компактности в пространстве
Lp(Ω, dµε), если любая последовательность функций uε, удовлетворяющая
условиям

(1) uε ∈ C∞0 (Ω), uε и ∇uε ограничены в Lp(Ω, dµε),

компактна в смысле сильной сходимости в Lp(Ω, dµε).
Имеет место следующий результат общего вида, связывающий принцип ком-

пактности в Lp(Ω, dµε) и неравенство Пуанкаре для меры µε.

Лемма 1. Пусть для любого куба D со стороной d, содержащего целое число
ячеек периодичности ε¤, выполнено неравенство Пуанкаре

(2)
∫

D

|f |pdµε ≤ Cdp

∫

D

|∇f |pdµε,

∫

D

fdµε = 0, f ∈ C∞(D)

с постоянной C, не зависящей от d и ε. Тогда имеет место принцип ком-
пактности в Lp(Ω, dµε).

Доказательство. Рассмотрим последовательность uε, удовлетворяющую усло-
вию (1). Продолжим функции uε нулем на RN . Так как последовательность
uε ограничена в Lp(Ω, dµε), то без ограничения общности можно считать, что
uε ⇀ u в Lp(Ω, dµε). Разобъем пространство RN на полуоткрытые, содержащие
целое число ячеек периодичности, кубы [0, d)N + dn, где n — целочисленный
вектор. Обозначим отдельный куб, имеющий непустое пересечение с областью
Ω, символом Dj . Тогда

∫

Ω

|uε(x)|pdµε =
∑

j

∫

Dj

|uε(x)|pdµε.

Из неравенства Пуанкаре (2) следует, что
∫

Dj

|uε(x)− cε
j |pdµε ≤ Cdp

∫

Dj

|∇uε(x)|pdµε,

cε
j =

1
pε

j

∫

Dj

uε(x)dµε, pε
j =

∫

Dj

dµε,

где постоянная C не зависит от d и ε. Складывая полученные равенства по
всем кубам Dj , находим

∑

j

∫

Dj

|uε(x)− cε
j |pdµε ≤ Cdp

∫

Ω

|∇uε(x)|pdµε.
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Последовательно применяя неравенство Минковского для интегралов и для
сумм, получаем

∑

j




(∫

Dj

|uε|pdµε

)1/p

− (
pε

j

)(1−p)/p

∣∣∣∣∣
∫

Dj

uεdµε

∣∣∣∣∣




p

≤ Cdp

∫

Ω

|∇uε|pdµε,

(∫

Dj

|uε|pdµε

)1/p

≤

∑

j

(
pε

j

)1−p

∣∣∣∣∣
∫

Dj

uεdµε

∣∣∣∣∣

p



1/p

+ C1/pd

(∫

Ω

|∇uε|pdµε

)1/p

.

Переходя к пределу при ε → 0 и учитывая ограниченность ∇uε в
Lp(Ω, dµε)N , приходим к неравенству

(
lim
ε→0

∫

Ω

|uε|pdµε

)1/p

≤

∑

j

(∫

Dj

dx

)1−p ∣∣∣∣∣
∫

Dj

udx

∣∣∣∣∣

p



1/p

+ C1d,

где постоянная C1 также не зависит от d и ε. По неравенству Гельдера
(

lim
ε→0

∫

Ω

|uε|pdµε

)1/p

≤
(∫

Ω

|u|pdx

)1/p

+ C1d.

Так как d произвольно, то при d → 0

lim
ε→0

∫

Ω

|uε|pdµε ≤
∫

Ω

|u|pdx.

По свойству полунепрерывности (ii) здесь должно выполняться равенство и
поэтому uε → u в Lp(Ω, dµε). Лемма доказана. ¤

4. Принцип компактности для мер специального вида

С помощью леммы 1 докажем принцип компактности для периодических
структур, которые характеризуются мерой специального вида. Для этого на
квадрате D = [0, d]2 рассмотрим меру

(3) dm = dv1 + dv2,

где
dv1 = dm1(x1)× dx2, dv2 = dx1 × dm2(x2),

а m1 и m2 — неотрицательные меры на отрезке I = [0, d] и v1(D) = v2(D) = k.
Нам потребуется следующая лемма.

Лемма 2. Для меры (3) имеет место неравенство Пуанкаре

(4)
∫

D

|f |pdm ≤ Cdp

∫

D

|∇f |pdm,

∫

D

fdm = 0, f ∈ C∞(D),

где постоянная C не зависит от d.

Доказательство. Возьмем точку x′, принадлежащую носителю меры dv1, и
точку x, принадлежащую носителю меры dv2. Тогда

(5) f(x)− f(x′) ≤
∫

T

|∇f |dx1 +
∫

T ′
|∇f |dx′2,
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где T ′ — вертикальное сечение, проходящее через точку x′, T — горизонтальное
сечение, проходящее через точку x. Интегрируя последнее неравенство как
функцию x′ по мере dv1, получаем

kf(x)−
∫

D

fdv1 ≤ k

∫

T

|∇f |dx1 + d

∫

D

|∇f |dv1

или по симметрии
∣∣∣∣kf(x)−

∫

D

fdv1

∣∣∣∣ ≤ k

∫

T

|∇f |dx1 + d

∫

D

|∇f |dv1,

откуда
∣∣∣∣kf(x)−

∫

D

fdv1

∣∣∣∣
p

≤ 2p−1

[
kpdp−1

∫

T

|∇f |pdx1 + dpkp−1

∫

D

|∇f |pdv1

]
.

Интегрируя полученное неравенство как функцию x по мере dv2, а затем при-
меняя неравенство Минковского, приходим к неравенству

∫

D

|f |pdv2 ≤ 2p−1k1−p

∣∣∣∣
∫

D

fdv1

∣∣∣∣
p

+ 4p−1dp

∫

D

|∇f |pdm.

Аналогично
∫

D

|f |pdv1 ≤ 2p−1k1−p

∣∣∣∣
∫

D

fdv2

∣∣∣∣
p

+ 4p−1dp

∫

D

|∇f |pdm.

Суммируя два последних неравенства, получаем
∫

D

|f |pdm ≤ 2p−1k1−p

(∣∣∣∣
∫

D

fdv1

∣∣∣∣
p

+
∣∣∣∣
∫

D

fdv2

∣∣∣∣
p)

+ 22p−1dp

∫

D

|∇f |pdm.

Так как |a|p + |b|p ≤ |a− b|p + |a + b|p при p > 1, то
∫

D

|f |pdm ≤ 2p−1k1−p

(∣∣∣∣
∫

D

fdm

∣∣∣∣
p

+
∣∣∣∣
∫

D

fdv1 −
∫

D

fdv2

∣∣∣∣
p)

+22p−1dp

∫

D

|∇f |pdm.

Отсюда с помощью неравенства
∣∣∣∣
∫

D

fdv1 −
∫

D

fdv2

∣∣∣∣ ≤ d

∫

D

|∇f |dm,

легко вытекаемого из неравенства (5) интегрированием по x′ и мере dv1, а
затем по x и мере dv2, получаем неравенство (4) при C = 3 · 4p−1. ¤

Из доказательства неравенства Пуанкаре (4) видно, что оно остается верным
и в том случае, когда v2(D) = lv1(D), где l — любое положительное число, не
зависящее от d.

Из лемм 1 и 2 следует принцип компактности для мер специального вида.

Теорема 1. Если периодическая нормированная борелевская мера m имеет
специальный вид

dm = dm1(x1)× dx2 + dx1 × dm2(x2),

где m1 и m2 — ненулевые неотрицательные меры, то имеет место принцип
компактности в пространстве Lp(Ω, dmε).
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Аналогичный результат справедлив также и для меры, заданной в простран-
стве: если периодическая нормированная борелевская мера m имеет специаль-
ный вид

dm = dm1(x1)× dx2 × dx3 + dx1 × dm2(x2)× dx3 + dx1 × dx2 × dm3(x3),

где хотя бы две из неотрицательных мер m1, m2 и m3 ненулевые, то имеет
место принцип компактности в пространстве Lp(Ω, dmε).

Из принципа компактности для специальных мер непосредственно следует
принцип компактности для следующих периодических структур:

(1) (канторовой) сетки, а также составной структуры, описываемой суммой
плоской меры Лебега и естественной меры на (канторовой) сетке;

(2) (канторовой) ящичной структуры, а также составной структуры, опи-
сываемой суммой пространственной меры Лебега и естественной меры
на (канторовой) ящичной структуре.

5. Принцип компактности для суммы мер специального вида

Перейдем к исследованию принципа компактности для периодических
структур, естественные меры которых можно представить в виде суммы мер
специального вида. Для этой цели нам потребуется следующий вспомогатель-
ный результат.

Лемма 3. Пусть uε → u в Lp(Ω, dµε) и мера µ представима в виде суммы
двух неотрицательных мер: µ = µ1 + µ2. Тогда (с точностью до выделения
подпоследовательности) uε → u в Lp(Ω, dµiε), i = 1, 2.

Доказательство. Так как последовательность uε ограничена в Lp(Ω, dµ1ε) и
Lp(Ω, dµ2ε), то (с точностью до выделения подпоследовательности)

uε ⇀ ui в Lp(Ω, dµiε), i = 1, 2.

Тогда u = µ1(¤)u1 + µ2(¤)u2 и по условию леммы

(6) lim
ε→0

∫

Ω

|uε|pdµε =
∫

Ω

|µ1(¤)u1 + µ2(¤)u2|pdx.

С другой стороны, по свойству полунепрерывности (ii)

lim
ε→0

∫

Ω

|uε|pdµiε ≥ µi(¤)
∫

Ω

|ui|pdx, i = 1, 2,

поэтому

(7) lim
ε→0

∫

Ω

|uε|pdµε =
2∑

i=1

lim
ε→0

∫

Ω

|uε|pdµiε ≥
∫

Ω

(µ1(¤)|u1|p + µ2(¤)|u2|p)dx.

Сравнивая (6) и (7), получаем∫

Ω

|µ1(¤)u1 + µ2(¤)u2|pdx ≥
∫

Ω

(µ1(¤)|u1|p + µ2(¤)|u2|p)dx.

Так как µ1(¤)+µ2(¤) = 1, то из последнего неравенства в силу строгой выпук-
лости функции f(t) = |t|p при p > 1 следует, что u1 = u2 = u и утверждение
леммы сразу вытекает из соотношения (6). ¤

С помощью леммы 3 докажем принцип компактности для суммы двух мер,
“связанных” через общую меру.
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Теорема 2. Пусть мера µ представима в виде суммы двух неотрицательных
мер: µ = µ1 + µ2, где меры µ1 и µ2 связаны через общую неотрицательную
меру: µ1 = λ1+λ2, µ2 = λ2+λ3. Тогда из принципа компактности в Lp(Ω, dµ1ε)
и Lp(Ω, dµ2ε) следует принцип компактности в Lp(Ω, dµε).

Доказательство. Пусть дана последовательность uε, удовлетворяющая усло-
вию (1). Без ограничения общности можно считать, что uε → ui в Lp(Ω, dµiε),
i = 1, 2. Тогда по лемме 3 uε → ui в Lp(Ω, dλ2ε), i = 1, 2. Отсюда следует, что
u1 = u2 = u и uε ⇀ u в Lp(Ω, dµε). Далее,

lim
ε→0

∫

Ω

|uε|pdµε =
3∑

i=1

lim
ε→0

∫

Ω

|uε|pdµiε =
3∑

i=1

µi(¤)
∫

Ω

|u|pdx =
∫

Ω

|u|pdx,

поэтому uε → u в Lp(Ω, dµε), что и требовалось. ¤
Из теоремы 2 следует принцип компактности для следующих периодических

структур:
(1) (канторовой) сетки, состоящей из объединения двух квадратных (кан-

торовых) сеток, у одной из которых стержни параллельны сторонам
квадрата [0, 1]2, а у другой — его диагоналям;

(2) составной структуры, описываемой суммой плоской меры Лебега и ме-
ры, характеризующей предыдущую структуру;

(3) (канторовой) ящичной структуры, состоящей из объединения несколь-
ких модельных (канторовых) ящичных структур, у одной из которых
грани параллельных граням куба [0, 1]3, а у других — его сечениям,
проходящим через противоположные ребра;

(4) составной структуры, описываемой суммой пространственной меры Ле-
бега и меры, характеризующей предыдущую структуру;

(5) составной структуры, описываемой суммой пространственной меры Ле-
бега и естественных мер на ящичной структуре и лежащих на ее гранях
канторовых сеток.
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