

СИБИРСКИЕ ЭЛЕКТРОННЫЕ
МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

<http://semr.math.nsc.ru>

Том 6, стр. 49–52 (2009)

Краткие сообщения

УДК 517.958

MSC 58A10, 58A15, 70G45

TORSION AND CURVATURE FOR THE 6-COMMUTATOR

A. DZHUMADIL'DAEV

ABSTRACT. Torsion and curvature for 6-commutator on $Vect(2)$ are calculated. It is proved that 6-curvature (6-torsion) can be presented as a exterior product of usual curvature (usual torsion) by some 4-form.

Keywords: N -commutator, torsion, curvature, Bianchi identities

Let s_k be a standard skew-symmetric associative polynomial

$$s_k(t_1, \dots, t_k) = \sum_{\sigma \in Sym_k} sign \sigma t_{\sigma(1)} \cdots t_{\sigma(k)}.$$

Let $M = M^n$ be a n -dimensional manifold, U a space of smooth functions on U and L a space of vector fields on M^n . Let $Diff_{[k]}$ be a space of differential operators of differential order k . Recall that a homogeneous differential operator $u_\alpha \partial^\alpha$ has differential order k if $\partial^\alpha = \prod_{i=1}^n \partial_i^{\alpha_i}$, $\partial_i = \frac{\partial}{\partial x_i}$, $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbf{Z}_+^n$, $\sum_{i=1}^n \alpha_i = k$. One can make identifications $U = Diff_{[0]}$ and $L = Diff_{[1]}$. Let

$$Diff_{(k)} = \bigoplus_l Diff_{[k]}$$

be a space of differential operators of differential order $\leq k$ and $Diff$ a space of all differential operators on M^n . Endow $Diff$ by a structure of associative algebra under composition. Then L became U -module under natural action $(u, X) \mapsto u \cdot X$.

One can consider s_k as a k -ary operation on a space $Diff$. In general,

$$X_1 \in Diff_{(l_1)}, \dots, X_k \in Diff_{(l_k)} \Rightarrow X_1 \cdots X_k \in Diff_{(l_1 + \cdots + l_k)},$$

and $s_k(X_1, \dots, X_k)$ is a differential operator of order $l_1 + \cdots + l_k - 1$. In case of $k = 2$ it is a well-defined operation on $Vect(n)$,

$$s_2(X_1, X_2) = [X_1, X_2] = X_1 X_2 - X_2 X_1$$

(Lie commutator).

DZHUMADIL'DAEV, A., TORSION AND CURVATURE FOR THE 6-COMMUTATOR.

© 2009 DZHUMADIL'DAEV A.

Communicated by I.A. Taimanov February 1, 2009, published February 17, 2009.

One asks whether s_N might be well-defined on $Vect(n)$ for $N > 2$. Call s_N as N -commutator if it is a such case,

$$\forall X_1, \dots, X_N \in Vect(n) \Rightarrow s_N(X_1, \dots, X_N) \in Vect(n).$$

In [1] it was established that for any n there exist some N depending on n such that N -commutators are well-defined. Namely, N -commutator on $Vect(n)$ is well-defined if $N = n^2 + 2n - 2$. For example, $Vect(2)$ has non-trivial 6-commutator.

Denote by $End L$ be a space of endomorphisms of L , i.e., space of \mathbf{R} -linear maps. Let $End_U L$ be space of U -linear maps on L .

Let $X_i = u_i^l \partial_l$ vector fields, $i = 0, 1, \dots, 6$. Here we use Einshtein notation. Summations are made over repeated indexes. Let $\nabla_X \in End L$ be covariant derivation. Recall that Riemann curvature $R : \wedge^2 L \rightarrow End_U L$ for a covariant derivation ∇_X is defined by

$$R(X_1, X_2) = [\nabla_{X_1}, \nabla_{X_2}] - \nabla_{[X_1, X_2]}.$$

Our aim is to study curvature and torsion for 6-commutator on $Vect(2)$. From now let L be space of vector fields on 2-dimensional space. Let us follow usual defintions of curvature and torsion (see for example, [2]) to generalize them for N -commutators. Define 6-torsion form and 6-curvature form for 6-commutator as a polylinear skew-symmetric maps

$$T_6 : \wedge^6 L \rightarrow L$$

$$R_6 : \wedge^6 L \rightarrow End_U L$$

by

$$T_6(X_1, \dots, X_6) = \sum_{i=1}^6 (-1)^{i+1} s_5(\nabla_{X_1}, \dots, \widehat{X_i}, \dots, \nabla_{X_6})(X_i) - s_6(X_1, \dots, X_6),$$

$$R_6(X_1, \dots, X_6) = s_6(\nabla_{X_1}, \dots, \nabla_{X_6}) - \nabla_{s_6(X_1, \dots, X_6)}.$$

Here notation $\widehat{X_i}$ means that corresponding element is omitted. Let $\eta : \wedge^4 L \rightarrow U$ be 4-form defined by

$$\eta(X_1, X_2, X_3, X_4) = -3 \begin{vmatrix} \partial_1 X_1(x_1) & \partial_1 X_2(x_1) & \partial_1 X_3(x_1) & \partial_1 X_4(x_1) \\ \partial_2 X_1(x_1) & \partial_2 X_2(x_1) & \partial_2 X_3(x_1) & \partial_2 X_4(x_1) \\ \partial_1 X_1(x_2) & \partial_1 X_2(x_2) & \partial_1 X_3(x_2) & \partial_1 X_4(x_2) \\ \partial_2 X_1(x_2) & \partial_2 X_2(x_2) & \partial_2 X_3(x_2) & \partial_2 X_4(x_2) \end{vmatrix}$$

Our main result is

Theorem 1. *Torsion and curvature for 6-commutators can be given by the following formulas*

$$T_6 = \eta \wedge T,$$

$$R_6 = \eta \wedge R.$$

In other words,

$$T_6(u_1^{l_1} \partial_{l_1}, \dots, u_6^{l_6} \partial_{l_6}) =$$

$$-3 \sum_{\sigma \in Sym_{2,4}} sign \sigma u_{\sigma(1)}^{l_1} u_{\sigma(2)}^{l_2} T_{l_1 l_2}^s \begin{vmatrix} \partial_1 u_{\sigma(3)}^1 & \partial_1 u_{\sigma(4)}^1 & \partial_1 u_{\sigma(5)}^1 & \partial_1 u_{\sigma(6)}^1 \\ \partial_2 u_{\sigma(3)}^1 & \partial_2 u_{\sigma(4)}^1 & \partial_2 u_{\sigma(5)}^1 & \partial_2 u_{\sigma(6)}^1 \\ \partial_1 u_{\sigma(3)}^2 & \partial_1 u_{\sigma(4)}^2 & \partial_1 u_{\sigma(5)}^2 & \partial_1 u_{\sigma(6)}^2 \\ \partial_2 u_{\sigma(3)}^2 & \partial_2 u_{\sigma(4)}^2 & \partial_2 u_{\sigma(5)}^2 & \partial_2 u_{\sigma(6)}^2 \end{vmatrix} \partial_s,$$

and

$$R_6(u_1^{l_1} \partial_{l_1}, \dots, u_6^{l_6} \partial_{l_6})(u_0^{l_0} \partial_{l_0}) =$$

$$-3 \sum_{\sigma \in Sym_{2,4}} \text{sign } \sigma u_0^{l_0} u_{\sigma(1)}^{l_1} u_{\sigma(2)}^{l_2} R_{l_0 l_1 l_2}^s \left| \begin{array}{cccc} \partial_1 u_{\sigma(3)}^1 & \partial_1 u_{\sigma(4)}^1 & \partial_1 u_{\sigma(5)}^1 & \partial_1 u_{\sigma(6)}^1 \\ \partial_2 u_{\sigma(3)}^1 & \partial_2 u_{\sigma(4)}^1 & \partial_2 u_{\sigma(5)}^1 & \partial_2 u_{\sigma(6)}^1 \\ \partial_1 u_{\sigma(3)}^2 & \partial_1 u_{\sigma(4)}^2 & \partial_1 u_{\sigma(5)}^2 & \partial_1 u_{\sigma(6)}^2 \\ \partial_2 u_{\sigma(3)}^2 & \partial_2 u_{\sigma(4)}^2 & \partial_2 u_{\sigma(5)}^2 & \partial_2 u_{\sigma(6)}^2 \end{array} \right| \partial_s.$$

Here

$$T_{ij}^l = \Gamma_{ij}^l - \Gamma_{ji}^l,$$

is torsion tensor and

$$R_{ijk}^l = -\partial_k \Gamma_{ij}^l + \partial_j \Gamma_{ik}^l + \Gamma_{mj}^l \Gamma_{ik}^m - \Gamma_{mk}^l \Gamma_{ij}^m$$

is curvature tensor and summations are made by shuffle permutations

$$Sym_{2,4} = \{\sigma \in Sym_6 \mid \sigma(1) < \sigma(2), \sigma(3) < \sigma(4) < \sigma(5) < \sigma(6)\}.$$

Theorem 2. *Take place the following analogues of Bianchi identities*

$$\sum_{i=1}^7 (-1)^i R_6(X_1, \dots, \widehat{X_i}, \dots, X_7) = 0,$$

$$\sum_{i=1}^7 (-1)^i \nabla_{X_i} R_6(X_1, \dots, \widehat{X_i}, \dots, X_7) = 0.$$

If Cristoffel symbols are compatible with Riemann metric $g_{i,j}$, and $\langle \cdot, \cdot \rangle$ is a scalar product, then

$$\langle R_6(X_1, \dots, X_6)(X_7), X_8 \rangle = -\langle R_6(X_1, \dots, X_6)(X_8), X_7 \rangle.$$

Here X_1, \dots, X_8 are any vector fields on M^2 .

So, 6-torsion and 6-curvatures are defined by 1-jets of vector fields. Recall that in classical cases torsion and curvature forms are U -linear maps. In case of 6-commutators U -linearity fall and remains only linearity over scalars.

Forms $T_6(X_1, \dots, X_6)$ and $R_6(X_1, \dots, X_6)(X_0)$ are polylinear over \mathbf{R} and skew-symmetric under arguments X_1, \dots, X_6 but 6-curvature is U -linear under X_0 .

Since 6-form η is not identically 0, notions of flatness in terms of 6-curvature and usual curvature are coincide. Similar things happen for torsions.

Corollary 3. *$R_6 = 0$ is an identity if and only if $R = 0$ is an identity.*

$T_6 = 0$ is an identity if and only if $T = 0$ is an identity.

Acknowledgements

I am grateful to N. Dairbekov who posed me a question about studying of curvatures and torsions for N -commutators.

REFERENCES

- [1] A.S. Dzhumadil'daev, *N-commutators*, Comment. Math. Helv. **79**:3 (2004), 516–553.
- [2] S.P. Novikov, I.A. Taimanov, *Modern Geometric Structures and Fields*, Graduate Studies in Math., **71**, AMS, 2006.

ASKAR DZHUMADIL'DAEV
INSTITUTE OF MATHEMATICS,
PUSHKIN STREET 125,
ALMATY, KAZAKHSTAN
E-mail address: askar56hotmail.com