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КВАНТОВАЯ ТЕОРЕМА ПОЙА

А. Н. БОНДАРЕНКО, В. А. ДЕДОК

Abstract. In this paper we discuss return probability properties of
quantum random walk on the line. In the classical case this property is
well known as the Polya theorem. We study in detail not only usually
discussed ”Hadamar walk”. In the general case quantum random walk
depends on parameter θ (0 ≤ θ ≤ π). It was shown that in the most
of cases when 0 < θ < π quantum random walk is weak localized and
recurrent and the return probability tends to 0 with the speed 1/t. Other
cases are also studied and described.
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1. Введение

Классическая модель случайного блуждания на прямой представляет собой
хорошо изученный объект: получено достаточно много результатов, описываю-
щих свойства блуждающей частицы. Помимо собственных свойств блуждания
интересны приложения модели классического блуждания в других областях.

Основное отличие блуждающей квантовой частицы от классической явля-
ется дополнительная внутренняя степень свободы: ”киральность”. Квантовый
закон эволюции состояния киральности дает гораздо большую свободу блуж-
дающей частицы.

В данной работе мы рассматриваем блуждание квантовой частицы на пря-
мой. Модель квантового случайного блуждания активно изучается в последнее
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десятилетие в связи с возможными применениями результатов в теории кван-
товых вычислений, ускорении алгоритмов, основанных на случайном блужда-
нии [2]. Более того, указанная модель имеет неожиданные приложения в теории
прямых и обратных задач рассеяния [1, 6].

Центральным объектом исследования является свойство возвратности блуж-
дающей квантовой частицы. В классическом случае данное свойство известно
как теорема Пойа. Нами получен квантовый аналог этого утверждения. Иссле-
дуется не только ”классический” случай адамаровского блуждания, рассмат-
ривается общий случай блуждания, зависящий от параметра θ (0 ≤ θ ≤ π).

Работа состоит из трех основных частей. В первой мы даем определение
квантовому случайному блужданию, во второй – описываем основные свойства
квантового блуждания и отличия от классического варианта и в третьей –
доказываем основную теорему о классификации возвратных и невозвратных
состояний блуждающей квантовой частицы на прямой.

2. Классические случайные процессы. Теорема Пойа

В классической теории вероятностей известна задача о случайном блужда-
нии частицы по целым числам на прямой [8]. Перемещение частицы происходит
через равные промежутки времени. В следующий момент времени частица из
точки k перемещается вправо в точку k + 1 с вероятностью p и влево в точ-
ку k − 1 с вероятностью q = 1 − p. Такой системе отвечает цепь Маркова с
состояниями - целыми точками на прямой,

Xn = Xn−1 + ξn = X0 + Sn, Sn =
n∑

i=1

ξi,

где ξi принимает значения 1 и −1 с вероятностями p и q. Обычно рассматри-
вается случай симметричного блуждания, когда p = q.

Обобщение симметричных случайных блужданий, очевидно, возможно и на
случай пространства Zk, k ≥ 2 (см. например [5]). Если частица находится в
точке (m1,m2, . . . , mk) в любую из соседних вершин куба |xj −mj | = 1, т.е. в
точки с координатами (m1 ± 1,m2 ± 1, . . . , mk ± 1) с вероятностью 1

2k .
Свойство возвращения в исходную точку симметрично блуждающей части-

цы в пространствах разной размерности описывается следующей теоремой [8]:

Теорема 1. (Пойа) При одномерном и двумерном случайном блуждании ча-
стица с вероятностью единица рано или поздно (и поэтому бесконечно много
раз) возвратится в свое начальное положение. Однако в случае трех изме-
рений эта вероятность равна всего лишь примерно 0.35 [математическое
ожидание числа возвращений равно тогда 0.65∗∑ k(0.35)k = 0.35/0.65 ≈ 0.53].

Поэтому, пословица ”все дороги ведут в Рим” верна только для пространства
не более чем двух измерений.

3. Квантовые марковские цепи

Следуя одной из первых работ по квантовым случайным блужданиям [4]
дадим определение дискретному квантовому случайному блужданию на пря-
мой. Гильбертово пространство состояний частицы H состоит из пространства
положений HP с базисом {|m〉|m ∈ Z} и пространства киральности

HC = {|L〉, |R〉}.
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Оператор перемещения частицы имеет вид

S =
∑
m

|m− 1〉〈m| ⊗ |L〉〈L|+
∑
m

|m + 1〉〈m| ⊗ |R〉〈R|.

Шаг по времени заключается во вращении вектора киральности частицы, за-
данного унитарной матрицей U и условного перемещения T . Оператор эволю-
ции, описывающий шаг квантового случайного блуждания выглядит следую-
щим образом:

M = T ◦ (I ⊗ U).

Обозначим |ψ(0)〉 начальное состояние квантовой частицы. Тогда, очевидно
состояние квантовой частицы будет определяться последовательным примене-
нием оператора эволюции к начальному состоянию

|ψ(t)〉 = M t|ψ(0)〉.

Распределение вероятностей нахождения описанной блуждающей квантовой
частицы задается следующим образом:

P (m, t) = |〈m,L|ψ(t)〉|2 + |〈m,R|ψ(t)〉|2

Волновую функцию блуждающей частицы можно описать в виде двукомпо-
нентного вектора

ψ(m, t) =
(

ψL(m, t)
ψR(m, t)

)
,

где компоненты соответствуют амплитуде вероятности нахождения частицы в
точке m, в момент времени t, с состоянием киральности |L〉 и |R〉. Тогда

|ϕ(t)〉 =
∑
m

(ψL(m, t)|m,L〉+ ψR(m, t)|m,R〉).

Роль симметричного квантового случайного блуждания играет адамаров-
ское блуждание с преобразованием состояния киральности матрицей Адамара:

H =

(
1√
2

1√
2

1√
2

− 1√
2

)
.

Волновая функция соответственно изменяется по правилу:

ψ(m, t + 1) =
(

0 0
1√
2

− 1√
2

)
ψ(m− 1, t) +

( 1√
2

1√
2

0 0

)
ψ(m + 1, t).

Интересно отметить, что разница между классическим и квантовым случай-
ным блужданием проявляется достаточно быстро. Вычисление распределения
вероятностей нахождения частицы в узлах после некоторого числа шагов для
классического и квантового блуждания представляет собой несложное ариф-
метическое упражнение.

Так, для 6-ти шагов по времени вероятности нахождения классической ча-
стицы выглядят следующим образом:
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t -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0 1
1 1

2
1
2

2 1
4

1
2

1
4

3 1
8

3
8

3
8

1
8

4 1
16

1
4

3
8

1
4

1
8

5 1
32

5
32

5
16

5
16

5
32

1
32

6 1
64

3
32

15
64

5
16

15
64

3
32

1
64

И аналогичная таблица для квантовой частицы с начальным положением (1, 0)T :
t -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0 1
1 1

2
1
2

2 1
4

1
2

1
4

3 1
8

5
8

1
8

1
8

4 1
16

5
8

1
8

1
8

1
16

5 1
32

17
32

1
8

1
8

5
32

1
32

6 1
64

13
32

13
64

1
8

5
64

5
32

1
64

Несмотря на то, что квантовое блуждание сохраняет некоторые свойства
классического: за четное число шагов вероятность нахождения в узле с нечет-
ным номерам равна нулю, и за нечетное число шагов вероятность нахождения
в узле с четными номерами равна нулю, разница в распределении вероятностей
обнаруживается уже на 3-м шаге.

4. Параметризация квантового случайного блуждания

В общем случае, унитарное преобразование зависит от четырех парамет-
ров. Однако, как было отмечено в [4], достаточно рассмотреть зависимость от
одного параметра, характеризующего семейства блужданий.

Таким образом, общее случайное блуждание может быть описано следую-
щим преобразованием:

M(θ) = T ◦ (I ⊗ Uθ), где
T = T− ⊗ |L〉〈L|+ T+ ⊗ |R〉〈R| и

Uθ = ei θ
2 σy

Оператор M(θ) описывает эволюцию квантовой частицы: |Ψ(t+1)〉 = M(θ)|Ψ(t)〉,
оператор T реализует левый (правый) сдвиг: T+|n〉 = |n + 1〉, T−|n〉 = |n − 1〉,
а унитарное преобразование Uθ осуществляет унитарное преобразование над
состоянием киральности.

Адамаровское случайное блуждание соответствует значению параметра θ =
π
2 :

H =
1√
2

(
1 1
1 −1

)
= −i

(
i 0
0 −i

) (
1√
2

1√
2

− 1√
2

1√
2

)
= −iei π

2 σzUπ
2
.

Где дополнительное вращение может быть нивелировано подходящим пере-
определением фазы состояния киральности.

В более удобном для использования виде эволюция частицы может быть
записана как:
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(1) Ψ(n, t + 1) =
(

0 0
sin θ

2 −cos θ
2

)
Ψ(n− 1, t) +

(
cos θ

2 sin θ
2

0 0

)
Ψ(n + 1, t).

Унитарность преобразования доказывает следующая теорема:

Теорема 2. Параметризованное параметром θ (0 ≤ θ ≤ π) случайное блуж-
дание унитарно, а именно

∞∑
n=−∞

(
Ψ2

L(n, t + 1) + Ψ2
R(n, t + 1)

)
=

∞∑
n=−∞

(
Ψ2

L(n, t) + Ψ2
R(n, t)

)
.

Доказательство

∞∑
n=−∞

(
Ψ2

L(n, t + 1) + Ψ2
R(n, t + 1)

)
=

∞∑
n=−∞

(
cos

θ

2
ΨL(n + 1, t) + sin

θ

2
Ψ2

R(n + 1, t)
)2

+

∞∑
n=−∞

(
sin

θ

2
ΨL(n− 1, t)− cos

θ

2
Ψ2

R(n− 1, t)
)2

=

cos2 θ

2

∞∑
n=−∞

Ψ2
L(n + 1, t) + sin2 θ

2

∞∑
n=−∞

Ψ2
R(n + 1, t)+

2sin
θ

2
cos

θ

2

∞∑
n=−∞

ΨL(n + 1, t)ΨR(n + 1, t)+

sin2 θ

2

∞∑
n=−∞

Ψ2
L(n− 1, t) + cos2 θ

2

∞∑
n=−∞

Ψ2
R(n− 1, t)−

2sin
θ

2
cos

θ

2

∞∑
n=−∞

ΨL(n− 1, t)ΨR(n− 1, t) =

∞∑
n=−∞

(
Ψ2

L(n, t) + Ψ2
R(n, t)

)
.

¤

5. Эволюция квантовой частицы на прямой

Используя выражение для волновой функции (1) несложно вычислить рас-
пределение вероятностей нахождения квантовой частицы для различных на-
чальных состояний частицы и различных значениях параметра θ.

Результаты расчетов для вероятности возвращения квантовой частицы даже
для не очень большого числа шагов позволяют сделать вывод, что распределе-
ния вероятностей нахождения квантовой частицы в заданной точке достаточно
сильно зависят как от начального состояния частицы, так и от параметра θ.
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6. Вероятность возвращения в исходную точку

Центральным объектом нашего исследования является вероятность возвра-
щения квантовой частицы в исходную точку.

Для параметра θ есть два пограничных значения: θ = 0 и θ = π.
Случай θ = 0 соответствует блужданию с ”сохранением направления движе-

ния”, т.е. вероятность нахождения частицы в исходной точке после n - шагов
равна нулю.

Лемма 1. Пусть θ = 0. Тогда P (0, t) = 0 для всех t ≥ 1 и любого начального
состояния квантовой частицы Ψ(0, 0).

Доказательство получается очевидным применением формулы (1).
¤
Случай θ = π соответствует блужданию ”зиг-заг”, т.е. ненулевая вероятность

нахождения частицы в точке n (|n| ≥ 2) после любого количества шагов равна
нулю.

Лемма 2. Пусть θ = π. Тогда P (n, t) = 0 для всех t ≥ 1, любого n (|n| ≥ 2) и
любого начального состояния квантовой частицы Ψ(0, 0).

Доказательство получается очевидным применением формулы (1).
¤
Рассмотрим промежуточные случаи:

Лемма 3. Пусть 0 < θ < π. Тогда

P (0, t) =
C

t
+ O

(
1
t2

)

для любого начального состояния квантовой частицы Ψ(0, 0).

Доказательство
Вычислим преобразование Фурье волновой функции Ψ(n, t + 1):

Ψ̃(k, t + 1) =
∞∑

n=−∞
(M−θΨ(n− 1, t) + M+θΨ(n + 1, t))eikn =

eikM−θΨ̃(k, t) + e−ikM+θΨ̃(k, t) = MθΨ̃(k, t),

где

Mθ =
(

e−ik cos θ
2 e−ik sin θ

2

eik sin θ
2 −eik cos θ

2

)
.

Используя эту формулу t + 1 раз, получаем

Ψ̃(k, t + 1) = M t+1
θ Ψ̃(k, 0) или Ψ̃(k, t) = M t

θΨ̃(k, 0).
Для вычисления степеней матрицы M t

θ воспользуемся следующим методом.
Обозначим a = eik, тогда собственные значения матрицы Mθ будут выглядеть
как:

λ1,2 = − 1
2a

(
(a2 − 1) cos(θ/2)±

√
(a4 − 2a2 + 1) cos(θ/2) + 4a2

)

Подставляя выражение для a и упрощая, получим
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λ1,2 = −i sin(k) cos(θ/2)∓
√

1− sin2(k) cos2(θ/2).

Замечая, что |λ1,2|2 = 1, заключаем λ1 = eiψ1 , λ2 = eiψ2 или

λ1 = e−i arcsin(sin(k) cos(θ/2)),

λ2 = e−i(arcsin(sin(k) cos(θ/2))+π) = −ei arcsin(sin(k) cos(θ/2)).

Опять же для краткости обозначим ωk = arcsin(sin(k) cos(θ/2)). Тогда собствен-
ные векторы запишутся как:

v1 =

(
1

λ1e
ik 1

sin( θ
2 )
− cot( θ

2 )

)
=

(
1

e−iωkeik 1
sin( θ

2 )
− cot( θ

2 )

)
,

v2 =

(
1

λ2e
ik 1

sin( θ
2 )
− cot( θ

2 )

)
=

(
1

−eiωkeik 1
sin( θ

2 )
− cot( θ

2 )

)

В нормализованном виде это будет выглядеть как:

u1 = N−(k)

(
e−ik

e−iωk 1
sin( θ

2 )
− e−ik cot( θ

2 )

)
,

u2 = N+(k)

(
e−ik

−eiωk 1
sin( θ

2 )
− e−ik cot( θ

2 )

)
,

где

N−(k) =

(
1 + (e−iωk

1
sin θ

2

− e−ik cot
θ

2
)(eiωk

1
sin θ

2

− eik cot
θ

2
)

)−1/2

,

N+(k) =

(
1 + (eiωk

1
sin θ

2

+ e−ik cot
θ

2
)(e−iωk

1
sin θ

2

+ eik cot
θ

2
)

)−1/2

.

Используя диагональное представление матрицы M получим, что

M t
θ = TDtT−1 = T

(
e−iωkt 0

0 (−1)teiωkt

)
T−1,

где

T =

(
N−e−ik N+e−ik

N−
(
e−iωk 1

sin( θ
2 )
− e−ik cot( θ

2 )
)

N+

(
−eiωk 1

sin( θ
2 )
− e−ik cot( θ

2 )
)

)
,

T−1 = T ∗
T

=


 N−eik N−

(
eiωk 1

sin( θ
2 )
− eik cot( θ

2 )
)

N+eik N+

(
−e−iωk 1

sin( θ
2 )
− eik cot( θ

2 )
)


 .

Как отмечалось ранее,

Ψ̃(k, t) = M t
θΨ̃(k, 0),

а

Ψ(n, t) =
1
2π

∫ π

−π

Ψ̃(k, t)e−ikndk.
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Для удобства, запишем матрицу M t
θ как

M t
θ =

(
a(k) b(k)
c(k) d(k)

)(
e−iωkt 0

0 (−1)teiωkt

)(
a(k) c(k)
b(k) d(k)

)

Пусть Ψ(0, 0) =
(

α
β

)
, Ψ(n 6= 0, 0) =

(
0
0

)
, тогда Ψ̃(k, 0) =

(
α
β

)
.

Ψ(n, t) =
1
2π

∫ π

−π

M t
θΨ̃(k, 0)e−ikndk =

1
2π

∫ π

−π

M t
θ

[
α

(
1
0

)
+ β

(
0
1

)]
e−ikndk =

α

2π

∫ π

−π

M t
θ

(
1
0

)
e−ikndk +

β

2π

∫ π

−π

M t
θ

(
0
1

)
e−ikndk =

αΨ1(n, t) + βΨ2(n, t)

Вычислим отдельно волновые функции для ”базисных” начальных условий(
1
0

)
и

(
0
1

)
.

Ψ̃1L(k, t) = a(k)a(k)e−iωkt + (−1)tb(k)b(k)eiωkt,

Ψ̃1R(k, t) = a(k)c(k)e−iωkt + (−1)tb(k)d(k)eiωkt.

Ψ1L(0, t) =
1
2π

∫ π

−π

[
a(k)a(k)e−iωkt + (−1)tb(k)b(k)eiωkt

]
dk =

1 + (−1)t

2π

∫ π

−π

[
a(k)a(k) + b(−k)b(−k)

]
e−iωktdk =

1 + (−1)t

2π

∫ π

−π

f1(k)e−iωktdk,(2)

Ψ1R(0, t) =
1
2π

∫ π

−π

[
a(k)c(k)e−iωkt + (−1)tb(k)d(k)eiωkt

]
dk =

1 + (−1)t

2π

∫ π

−π

[
a(k)c(k) + b(−k)d(−k)

]
e−iωktdk =

1 + (−1)t

2π

∫ π

−π

f2(k)e−iωktdk,(3)

Вычислим асимптотику (2), (3) методом стационарной фазы, для чего най-
дем критические точки фазовой функции S(k) = − arcsin(sin(k) cos(θ/2)).

S′(k) = − cos(k) cos(θ/2)√
1− sin2(k) cos2(θ/2)

,

S′′(k) =
sin(k) cos(θ/2) sin2(θ/2)

(
1− cos2(θ/2) sin2(k)

)3/2
.

Так как теперь θ 6= 0 и θ 6= π, тем самым, фазовая функция имеет две
критических точки k = ±π

2 , тогда
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IL = IL(k1) + IL(k2) + O(t−∞), t →∞,

IR = IR(k1) + IR(k2) + O(t−∞), t →∞.

Выражения для IL(k1), IL(k2), IR(k1), IR(k2) получаются применением прин-
ципа локализации [7]. Итак,

k1 = −π

2
, k2 =

π

2
,

S(k1) =
π

2
− θ

2
, S(k2) = −π

2
+

θ

2
,

S′′(k1) = − cot
θ

2
, S′′(k2) = cot

θ

2
,

f1(k1) = 1, f2(k1) = −i,

f1(k2) = 1, f2(k2) = i.

Главные члены асимптотики имеют вид:

Ψ1L(t) =

√
2π

t cot θ
2

(
1 + O(t−1)

)
exp

(
it

(
π

2
− θ

2

)
− i

π

2

)
+

√
2π

t cot θ
2

(
1 + O(t−1)

)
exp

(
it

(
−π

2
+

θ

2

)
+ i

π

2

)
+ O(t−∞), t →∞

Ψ1R(t) =

√
2π

t cot θ
2

(−i + O(t−1)
)
exp

(
it

(
π

2
− θ

2

)
− i

π

2

)
+

√
2π

t cot θ
2

(
i + O(t−1)

)
exp

(
it

(
−π

2
+

θ

2

)
+ i

π

2

)
+ O(t−∞), t →∞.

Аналогично вычислим Ψ2(n, t).

Ψ̃2L(k, t) = a(k)c(k)e−iωkt + (−1)tb(k)d(k)eiωkt,

Ψ̃2R(k, t) = c(k)c(k)e−iωkt + (−1)td(k)d(k)eiωkt.
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Ψ2L(0, t) =
1
2π

∫ π

−π

[
a(k)c(k)e−iωkt + (−1)tb(k)d(k)eiωkt

]
dk =

1 + (−1)t

2π

∫ π

−π

[
a(k)c(k) + b(−k)d(−k)

]
e−iωktdk =

1 + (−1)t

2π

∫ π

−π

f1(k)e−iωktdk,(4)

Ψ2R(0, t) =
1
2π

∫ π

−π

[
c(k)c(k)e−iωkt + (−1)td(k)d(k)eiωkt

]
dk =

1 + (−1)t

2π

∫ π

−π

[
c(k)c(k) + d(−k)d(−k)

]
e−iωktdk =

1 + (−1)t

2π

∫ π

−π

f2(k)e−iωktdk,(5)

Аналогично Ψ1 применим принцип локализации:

k1 = −π

2
, k2 =

π

2
,

S(k1) =
π

2
− θ

2
, S(k2) = −π

2
+

θ

2
,

S′′(k1) = − cot
θ

2
, S′′(k2) = cot

θ

2
,

f1(k1) = i, f2(k1) = 1,

f1(k2) = −i, f2(k2) = 1.

И главные члены асимптотики имеют вид:

Ψ2L(t) =

√
2π

t cot θ
2

(
i + O(t−1)

)
exp

(
it

(
π

2
− θ

2

)
− i

π

2

)
+

√
2π

t cot θ
2

(−i + O(t−1)
)
exp

(
it

(
−π

2
+

θ

2

)
+ i

π

2

)
+ O(t−∞), t →∞

Ψ2R(t) =

√
2π

t cot θ
2

(
1 + O(t−1)

)
exp

(
it

(
π

2
− θ

2

)
− i

π

2

)
+

√
2π

t cot θ
2

(
1 + O(t−1)

)
exp

(
it

(
−π

2
+

θ

2

)
+ i

π

2

)
+ O(t−∞), t →∞.

Вспоминая разложение волновой функции через ”базисные” и используя
асимптотики для ”базисных” волновых функций, получим асимптотику для ве-
роятности возвращения квантовой частицы в зависимости от начальных усло-
вий:
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Pθ(0, t) = |αΨL1(0, t) + βΨL2(0, t)|2 + |αΨR1(0, t) + βΨR2(0, t)|2 =

C1(θ)
t

∣∣∣∣2 cos
(

tπ

2
− tθ

2
− π

2

)
(α + iβ)

∣∣∣∣
2

+
C1(θ)

t

∣∣∣∣2 sin
(

tπ

2
− tθ

2
− π

2

)
(α + iβ)

∣∣∣∣
2

+O(t−2) =
C(θ)

t
+ O(t−2).

Отметим, что константа C зависит только от параметра θ и не зависит от
времени t. Что и доказывает лемму.

¤
Определение. Квантовое случайное блуждание назовем возвратным, если∑∞
n=0 pr(n) = ∞. Здесь pr(n) – вероятность возвращения квантовой частицы в

начальную точку за n шагов.
Отметим, что данное определение совпадает с определением слабо локализо-

ваной частицы, данное в [3]. Нам удобно будет пользоваться обоими терминами,
одно из которых несет математический смысл, а другое – физический.

В итоге, из лемм 1, 2 и 3 следует теорема, описывающая возвратность кван-
товой частицы:

Теорема 3. (Одномерная квантовая теорема Пойа)
Пусть θ = 0, тогда квантовое блуждание на прямой с любым начальным

состоянием не возвратно.
Пусть 0 < θ < π, тогда квантовое блуждание на прямой с любым на-

чальным состоянием возвратно (слабо локализовано). При этом главный член
асимптотики не зависит от начального состояния.

Пусть θ = π, тогда квантовое блуждание на прямой с любым начальным
состоянием возвратно (слабо локализовано). При этом при |n| >= 2 Pθ(n, t) =
0.

Таким образом нами получена классификация возвратных и невозвратных
состояний квантовой частицы. Основная теорема позволяет описать свойство
возвратности в терминах параметра случайного блуждания, и тем самым яв-
ляется квантовым аналогом результата Пойа о возвратности классической ча-
стицы.
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