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ВЕРШИН И ОБХВАТОМ

В.А. ТАШКИНОВ

Abstract. For every g ≥ 3 we prove the existence of a simple graph

with maximum degree at most 6, girth at least g and chromatic number

at least 4.

1. Введение

Пусть χ(G) и ∆(G) — хроматическое число и максимальная степень вершин
графа G соответственно. Обхватом графа G называется длина кратчайшего
цикла в графе G. Обозначим через G(∆, g) класс всех обыкновенных графов с
максимальной степенью вершин, не превосходящей ∆, и с обхватом не менее g.
Пусть ψ(∆) = min

g
max

G∈G(∆,g)
χ(G).

Б. Грюнбаум [1] предположил, что ψ(∆) = ∆ при ∆ ≥ 3, т. е. что оцен-
ка теоремы Брукса точна для графов с любым обхватом. Это предположе-
ние оказалось неверным. О. В. Бородин и А. В. Косточка [2] доказали, что

ψ(∆) ≤ 3(∆ + 2)
4 . Затем А. В. Косточка [3] доказал, что ψ(∆) ≤

⌊

∆
2

⌋

+ 2.

Наконец, Дж.-Х. Ким [4] доказал, что ψ(∆) ≤ (1 + o(1)) ∆
log ∆

. С другой сто-

роны, А. В. Косточка и Н. П. Мазурова [5] доказали нижнюю оценку для этой

величины ψ(∆) ≥
⌊

∆
2 ln∆

⌋

+ 1. Однако при ∆ ≤ 8 эта оценка становится три-

виальной (ψ(8) ≥ 2). В [5] было показано, что ψ(8) ≥ 4. В настоящей работе
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100 В. А. ТАШКИНОВ

доказывается, что ψ(6) ≥ 4. Отметим также, что значения ψ(4) и ψ(5) не из-
вестны.

Пусть заданы неотрицательные целые числа N , M , R, k, n и Ni, 1 ≤ i ≤ k,
удовлетворяющие условиям

(1)



















N, k ≥ 2,

N = 2n =
k

∑

i=1

Ni и

2M ≤ N,

а также множество помеченых вершин V = {v1, . . . , vN} и одно из

(

N

N1 . . . Nk

)

разбиений множества V на попарно непересекающиеся подмножества V =
⋃k

i=1 Vi с |Vi| = Ni для любого i, 1 ≤ i ≤ k, которые в дальнейшем будут

называться цветовыми классами. Для данного разбиения V =
⋃k

i=1 Vi множе-
ства V на k цветовых классов будем называть одноцветными ребра, оба конца
которых содержатся в одном и том же цветовом классе.

Обозначим через M(N, 1) класс всех совершенных паросочетаний на мно-
жестве вершин V . Через M(N,R) обозначим класс всех R-однородных мульти-
графов на этом же множестве вершин, получающихся объединением ребер R

попарно различных совершенных паросочетаний из класса M(N, 1). При этом
считается, что мультиграфы, получающиеся из различных наборов совершен-
ных паросочетаний различны. Наконец, пусть µ(N,R) = |M(N,R)|.

Ребро, инцидентное данной вершине множества V , можно выбрать 2n − 1
способом. Следовательно,

(2)











µ(2n, 1) = (2n− 1)!! =
(2n)!

2nn!
и

µ(2n,R) =

(

µ(2n, 1)

R

)

.

Зафиксированная выше раскраска {Vi}k
i=1 вершин множества V в k цветов

индуцирует разбиение класса M(N,R) на подклассы по числу одноцветных ре-
бер. Обозначим через M=(M,R,N1, . . . , Nk) и M≤(M,R,N1, . . . , Nk) подклассы
класса M(N,R), состоящие из мультиграфов, содержащих ровно M или не бо-
лее чем M одноцветных ребер соответственно. Пусть µ=(M,R,N1, . . . , Nk) =
|M=(M,R,N1, . . . , Nk)| и µ≤(M,R,N1, . . . , Nk) = |M≤(M,R,N1, . . . , Nk)|. Т. к.
{M=(M,R,N1, . . . , Nk)}n

M=0 состоит из попарно непересекающихся подклассов,
то

(3) µ≤(M,R,N1, . . . , Nk) =
M
∑

i=0

µ=(i, R,N1, . . . , Nk).

Всякому мультиграфу G из M(M,R,N1, . . . , Nk) соответствует разбиение

числа M на R неупорядоченных неотрицательных слагаемых:

M
∑

i=0

iαi = M ,

M
∑

i=0

αi = R, для которого мультиграф G получается объединением ребер α0

совершенных паросочетаний из класса M(0, 1, N1, . . . , Nk), . . . , αi совершенных
паросочетаний из класса M(i, 1, N1, . . . , Nk), . . . . Наоборот, по всевозможным
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разбиениям числа M на R неупорядоченных неотрицательных слагаемых и
величинам µ(M, 1, N1, . . . , Nk), можно вычислить величину

(4) µ=(M,R,N1, . . . , Nk) =
∑

A(M,R)

M
∏

i=0

(

µ=(i, 1, N1, . . . , Nk)

αi

)

,

где A(M,R) = {(α0, . . . , αM )|
M
∑

i=0

iαi = M &
M
∑

i=0

αi = R}.

Множество из 2m вершин можно покрыть ребрами совершенного паросоче-

тания (2m− 1)!! =
(2m)!

2mm!
различными способами. Два множества одинаковой

мощности n можно соединить ребрами совершенного паросочетания n! раз-
личными способами. Для любого i, 1 ≤ i ≤ k, множество Vi можно разбить

на k попарно непересекающихся подмножеств Vi =
⋃k

j=1 Vi,j с |Vi,j | = Ni,j

для любого j, 1 ≤ j ≤ k,

(

Ni

Ni,1 . . . Ni,k

)

различными способами. Согласо-

ванное разбиение Ni =
∑k

j=1Ni,j всех целых чисел Ni, 1 ≤ i ≤ k, на k

неотрицательных целых слагаемых каждое так, чтобы для всех i, 1 ≤ i ≤
k, Ni,i было четным и для всех i и j, 1 ≤ i < j ≤ k, Ni,j = Nj,i, суще-
ствует тогда и только тогда, когда матрица ‖Ni,j‖k

i,j=1 является матрицей
смежности некоторого псевдографа G с помечеными вершинами V1, . . . , Vk,
имеющими заданные степени degGVi = Ni, 1 ≤ i ≤ k. Пусть Ni,i = 2Mi,
1 ≤ i ≤ k. Обозначим N(M ;N1, . . . , Nk) множество всех возможных матриц

смежности псевдографов указанного вида, для которых
∑k

i=1Mi = M . Число
µ‖Ni,j‖k

i,j=1

совершенных паросочетаний, покрывающих множество вершин V

в соответствии с матрицей ‖Ni,j‖k
i,j=1 ∈ N(M ;N1, . . . , Nk), равно µ‖Ni,j‖k

i,j=1

=

k
∏

i=1

[(

Ni

Ni,1 . . . Ni,k

)

(Ni,i − 1)!!

]

∏

1≤i<j≤k

Ni,j !, т. е.

(5) µ‖Ni,j‖k
i,j=1

=

k
∏

i=1

Ni!

2M

k
∏

i=1

Mi!
∏

1≤i<j≤k

Ni,j !

.

С другой стороны

(6) µ=(M, 1, N1, . . . , Nk) =
∑

N(M ;N1,...,Nk)

µ‖Ni,j‖k
i,j=1

.
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2. О числе коротких циклов в графах из M(N,R)

Целью настоящей работы является доказательство существования при до-
статочно больших N среди графов класса M(N,R) таких графов, которые
имеют большое хроматическое число даже после удаления из каждого цикла
длины меньше g по одному ребру. Для этого покажем сначала, что среднее
число коротких циклов в графах из M(N,R) не зависит от N .

Пусть cg(N,R) — общее число циклов длины меньше g во всех графах из
M(N,R) (каждый такой цикл на множестве V считается столько раз, сколько
графов из M(N,R) его содержат). Тогда

Лемма 1. Для достаточно больших N при R ≥ 2 имеет место

cg(N,R)

µ(N,R)
< (R− 1)!Rg.

Доказательство. Пусть 1 < l < g произвольно. Цикл длины l при l ≥ 3 на вер-

шинах из V можно выбрать
N(N − 1) . . . (N − l + 1)

2l
различными способами.

Цикл длины 2 можно выбрать
N(N − 1)

2
различными способами. Рассмотрим

произвольный цикл C длины l на вершинах из V , множество ребер которого
разбито на R попарно непересекающихся подмножеств E(C) = E1 ∪ · · · ∪ ER

(необязательно непустых). Пусть |Ei| = εi для всех i, 1 ≤ i ≤ R. Заметим, что
набор совершенных паросочетаний, из которых сформирован любой граф из
M(N,R), содержащий цикл C, порождает такое разбиение множества ребер
цикла C на R попарно непересекающихся подмножеств, каждое из которых
состоит из попарно несмежных ребер одного и того же совершенного паросо-
четания.

Обратно, если компоненты указанного разбиения множества ребер цикла C
являются паросочетаниями, то каждую из этих компонент можно продолжить
до совершенного паросочетания, сформировав тем самым граф из M(N,R),
содержащий цикл C. Подмножество Ei, 1 ≤ i ≤ R, можно продолжить до
совершенного паросочетания (N − 2εi − 1)!! различными способами. Для лю-

бого мультииндекса ε = (ε1, . . . , εR) обозначим |ε| =

R
∑

i=1

εi и

(

l

ε

)

=

(

l

ε1 . . . εR

)

(число разбиений l-элементного множества на R попарно непересекающихся
подмножеств, состоящих соответственно из ε1, . . . , εR элементов). Тогда цикл
C при l ≥ 3 содержится не более чем в

∑

|ε|=l

(

l

ε

) R
∏

i=1

(N − 2εi − 1)!! = (N − 1)!!R
∑

|ε|=l

(

l

ε

) R
∏

i=1

εi
∏

j=1

1

N − 2εi + 2j − 1
≤

(N − 1)!!R
∑

|ε|=l

(

l

ε

) R
∏

i=1

1

(N − l + 1)εi
=

(N − 1)!!R

(N − l + 1)l
Rl

графах из M(N,R). При l = 2 и R ≥ 2 цикл C содержится не более чем в
(

(N − 3)!!

2

)(

(N − 1)!! − 2

R− 2

)

≤ (N − 3)!!2

2!

(N − 1)!!R−2

(R− 2)!
≤ (N − 1)!!R

2(N − 1)2
R2



О НИЖНЕЙ ГРАНИЦЕ ДЛЯ ХРОМАТИЧЕСКОГО ЧИСЛА 103

графах из M(N,R). Поэтому

cg ≤
g−1
∑

l=2

l
∏

i=1

(N − i+ 1)

2l

(N − 1)!!R

(N − l + 1)l
Rl ≤ (N − 1)!!R

4

g−1
∑

l=2

Rl

(

1 +
l − 1

N − l+ 1

)l

.

Заметим теперь, что

(N − 1)!!R =

(

(N − 1)!!

R

)

R!(N − 1)!!R

R
∏

i=1

((N − 1)!! − i+ 1)

≤

≤ µ(N,R)R!

(

1 +
R− 1

(N − 1)!! −R+ 1

)R

.

Выберем вещественное δ > 0 так, чтобы
(1 + δ)g+R

2
< 1. Тогда натуральное N

всегда можно выбрать настолько большим, чтобы одновременно выполнялись

неравенства
R− 1

(N − 1)!! −R+ 1
< δ и

l − 1

N − l + 1
< δ для любого l, 1 < l < g.

Следовательно, для достаточно больших N

cg ≤ µ(N,R)R!

4
(1 + δ)R

g−1
∑

l=2

Rl(1 + δ)l ≤ µ(N,R)R!

4
(1 + δ)R (R(1 + δ))g − 1

R(1 + δ) − 1
.

Т. к. при R ≥ 2 имеет место соотношение 2(R(1 + δ) − 1) ≥ R, то

cg ≤ µ(N,R)R!
(1 + δ)R+g

2
Rg−1 < µ(N,R)(R − 1)!Rg,

что и требовалось доказать. �

Следствие 1. Больше половины графов из M(N,R) для достаточно больших
N содержат каждый не более 2(R− 1)!Rg циклов длины меньше g.

3. О максимуме величины

k
∏

i=1

Ni!

k
∏

i=1

Mi!
∏

1≤i<j≤k

Ni,j !

В этом разделе ограничимся рассмотрением случая k = 3. Пусть l(i, j) —
единственное натуральное число из {1, 2, 3}\{i, j} для любых i, j, 1 ≤ i < j ≤ 3.

Лемма 2. Для любого M ≥ 0 при достаточно больших N = 2n, если

(7)

{

M1 +M2 +M3 = M и
N1,2 +N1,3 +N2,3 = n−M,

то величина
N1!N2!N3!

M1!M2!M3!N1,2!N1,3!N2,3!
принимает наибольшее значение при

(i) Mi1 ≥Mi2 ≥Mi3 ;
(ii) Ni1,i2 ≥ Ni1,i3 ≥ Ni2,i3 ;

(iii) Mi1 −Mi3 ≤ 1 и
(iv) Ni1,i2 −Ni2,i3 ≤ 3,
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где (i1, i2, i3) – любая перестановка чисел (1, 2, 3), для которой Ni1 ≥Ni2 ≥Ni3 .

Доказательство. Предположим, что при данном наборе значений переменных
M1, M2, M3, N1,2, N1,3 и N2,3, удовлетворяющем условиям (7), величина

Π =
N1!N2!N3!

M1!M2!M3!N1,2!N1,3!N2,3!

принимает свое наибольшее значение. Такое предположение корректно, по-
скольку рассматриваемая величина принимает лишь конечное число (нату-
ральных!) значений.

Пусть индексы i и j, 1 ≤ i < j ≤ 3, произвольны. Рассмотрим набор значений
переменных, получающийся из данного, добавлением единицы к Mj и вычи-
танием единицы из Mi. На этом наборе рассматриваемая величина принимает
значение

Π′ =
(Ni − 2)!(Nj + 2)!Nl(i,j)!

(Mi − 1)!(Mj + 1)!Ml(i,j)!N1,2!N1,3!N2,3!
.

Обозначим Ri,j =
Π′

Π
. Тогда в силу максимальности выбора Π

(8) Ri,j =
(Nj + 1)(Nj + 2)Mi

(Ni − 1)Ni(Mj + 1)
≤ 1 для всех i, j, 1 ≤ i < j ≤ 3.

Аналогично, если рассмотрим набор значений переменных, получающийся
из данного, добавлением единицы к Nj,l(i,j) и вычитанием единицы из Ni,l(i,j).
На этом наборе рассматриваемая величина принимает значение

Π′ =
(Ni − 1)!(Nj + 1)!Nl(i,j)!

M1!M2!M3!Ni,j !(Ni,l(i,j) − 1)!(Nj,l(i,j) + 1)!
.

Обозначим Si,j =
Π′

Π
. Тогда в силу максимальности выбора Π

(9) Si,j =
(Nj + 1)Ni,l(i,j)

Ni(Nj,l(i,j) + 1)
≤ 1 для всех i, j, 1 ≤ i < j ≤ 3.

1. Если Ni ≥ Nj, то Mi ≥Mj.
В самом деле, если Mi + 1 ≤Mj , то

Rj,i =
(Ni + 1)(Ni + 2)Mj

(Nj − 1)Nj(Mi + 1)
≥ (Ni + 1)(Ni + 2)

(Nj − 1)Nj

> 1,

что противоречит условию (8).
2. Если Ni ≥ Nj, то Ni,l(i,j) ≥ Nj,l(i,j).

В самом деле, если Ni,l(i,j) + 1 ≤ Nj,l(i,j), то

Sj,i =
(Ni + 1)Nj,l(i,j)

Nj(Ni,l(i,j) + 1)
≥ (Ni + 1)

Nj

> 1,

что противоречит условию (9).

Изменим теперь нумерацию переменных так, чтобы было

(10) N1 ≥ N2 ≥ N3.

Тогда в силу пунктов 1 и 2

3. M1 ≥M2 ≥M3 и
4. N1,2 ≥ N1,3 ≥ N2,3.
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Отсюда сразу следует, что

5. N1,2 ≥ n−M

3
.

6. N3 > 0 при достаточно большом N .
В самом деле, если N3 = 0, то M3 = N1,3 = N2,3 = 0. Рассмотрим
набор значений переменных, получающийся из данного, прибавлением
к N1,3 и кN2,3 по единице и вычитанием двойки из N1,2. На этом наборе
рассматриваемая величина принимает значение

Π′ =
(N1 − 1)!(N2 − 1)!(N3 + 2)!

M1!M2!M3!(N1,2 − 2)!(N1,3 + 1)!(N2,3 + 1)!
.

Обозначим T =
Π′

Π
. Тогда T =

(N3 + 2)(N3 + 1)(N1,2 − 1)N1,2

N1N2(N1,3 + 1)(N2,3 + 1)
=

1 +
2N1,2(N1,2 − 1) − (N1,2 + 2M1)(N1,2 + 2M2)

N1N2
.

В силу пункта 5 значение квадратного трехчлена от переменной N1,2

в числителе растет с ростом N = 2n. Поэтому T > 1 для достаточно
большого N , вопреки максимальности выбора Π.

7. M1 −M3 > 0.
В самом деле, неравенство (9) для i = 1 и j = 3 эквивалентно неравен-
ству

(N3 + 1)N1,2 ≤ N1(N2,3 + 1),

которое, в свою очередь, легко преобразовывается в

(N1,3 + 2M3)(N1,2 −N2,3 − 1) ≤ 2(M1 −M3)(N2,3 + 1).

Т. к. по пункту 6 N3 > 0, а N2,3 ≤ N1,3, то N1,3 + 2M3 > 0. Поэтому

(11) N1,2 −N2,3 ≤ 1 +
2(M1 −M3)(N2,3 + 1)

N1,3 + 2M3
.

Но при M1 = M3 отсюда сразу следует N1,2 −N2,3 ≤ 1, что и требуется
доказать.

8. M1 −M3 ≤ 1 при достаточно большом N .
В самом деле, неравенство (8) для i = 1 и j = 3 эквивалентно неравен-
ству

0 ≥ (N3 + 1)(N3 + 2)M1 − (N1 − 1)N1(M3 + 1) =

(M1 −M3 − 1)N1(N1 − 1)−
M1[(N1,2 −N2,3) + 2(M1 −M3 − 1)](N1 +N3 + 1).

Если M1 = 0, то M3 = 0 и, следовательно, M1 − M3 = 0, вопреки
пункту 7. Пусть M1 > 0. Тогда рассматриваемое неравенство можно
записать в виде

(M1 −M3 − 1)

[

N1(N1 − 1)

M1(N1 +N3 + 1)
− 2

]

≤

N1,2 −N2,3 ≤ 1 +
2(M1 −M3)(N2,3 + 1)

N1,3 + 2M3
≤

1 +
2(M1 −M3)[(N1,3 + 2M3) + 2(M1 −M3) − (2M1 − 1)]

N1,3 + 2M3
≤
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1 + 4(M1 −M3)
2 ≤ 5 + (M1 −M3 − 1)4(M + 1).

С другой стороны, поскольку N1 ≥ N

3
, N2 ≥ 1, т. е. N1 +N3 + 1 ≤ N , и

M1 −M3 − 1 ≥ 1, то

5 ≥
[

N1(N1 − 1)

M1(N1 +N3 + 1)
− 4M − 6

]

≥ (N − 3)

9M
− 4M − 6,

что невозможно для достаточно больших N .
9. N1,2 −N2,3 ≤ 3 при достаточно большом N .

В самом деле, в силу пунктов 7 и 8 M1 = M3 + 1. Поэтому, если N1,2 −
N2,3 ≥ 4, то неравенство (11) можно переписать в виде

2(N2,3 + 1)

N1,3 + 2M3
≥ N1,2 −N2,3 − 1 ≥ 3, т. е.

3(N1,3 −N2,3) + 6M3 ≤ 2 −N2,3

Отсюда сразу следует, что M3 = N1,3 − N2,3 = 0 и, следовательно,
N1,3 = N2,3 ≤ 2. Учитывая это, неравенство (11) можно переписать в
виде

N1,2 ≤ 1 +N2,3 + 2 +
2

N1,3
≤ 7.

Это невозможно при достаточно больших N .

�

4. О числе графов из M(N,R), имеющих малое число одноцветных

ребер

Лемма 3. Предположим, что для некоторых констант c1 и c2 максимум

величины

k
∏

i=1

Ni!

k
∏

i=1

Mi!
∏

1≤i<j≤k

Ni,j !

при

k
∑

i=1

Mi = M и
∑

1≤i<j≤k

Ni,j = n−M при до-

статочно больших N достигается на значениях переменных, удовлетворя-
ющих условиям max

1≤i≤k
Mi − min

1≤i≤k
Mi ≤ c1 и max

1≤i<j≤k
Ni,j − min

1≤i<j≤k
Ni,j ≤ c2. Тогда

для достаточно больших N

(12)
µ≤(M,R,N1, . . . , Nk)

µ(N,R)
< C(k,M,R)N c(k,M,R)

(

k − 1

k

)Rn

.

Доказательство. Сначала, используя равенства (2) и формулу Стирлинга в
виде неравенств

C1

√
n

(n

e

)n

< n! < C2

√
n

(n

e

)n

,

оценим снизу величину

µ(N,R) =

(

µ(N, 1)

R

)

≥ (µ(N, 1) −R+ 1)R

R!
=

(µ(N, 1))R

R!

(

1 − R− 1

µ(N, 1)

)R

≥
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C′(R)

(

(2n)!

2nn!

)R

> C′(R)











C1

√
2n

(

2n

e

)2n

2nC2
√
n

(n

e

)n











R

= C(R)

(

2n

e

)Rn

.

Заметим теперь, что для любых неотрицательных целых k > 0 и A1 ≥ A2 ≥
· · · ≥ Ak, если A1 + · · · +Ak = A и A1 −Ak = c, то

(13)
A− (k − 1)c

k
≤ Ak ≤ A1 ≤ A+ (k − 1)c

k
.

В самом деле, A ≤ Ak + (k − 1)A1 = kAk + (k − 1)c, т. е. Ak ≥ A− (k − 1)c

k
.

Правое неравенство доказывается аналогично.
Используя неравенства (13), оценим снизу для достаточно больших N ту

часть знаменателя формулы (5), которая зависит от N .

∏

1≤i<j≤k

Ni,j ! ≥ Nk−1,k!
k(k−1)

2 ≥

















n−M − c2

(

k(k − 1)
2 − 1

)

k(k − 1)
2









!









k(k−1)
2

>



C1

√

2n− 2M − x

k(k − 1)

(

2n− 2M − x

k(k − 1)e

)
2n−2M−x

k(k−1)





k(k−1)
2

>

C′′
1 (k,M)n

k(k−1)
4

(

2n

k(k − 1)e

)n−M−x
2

= C′′(k,M)nc′′(k,M)

(

2n

k(k − 1)e

)n

,

где x = c2(k + 1)(k − 2)). Совершенно аналогично для достаточно больших N
оценивается сверху числитель формулы (5).

k
∏

i=1

Ni! ≤ N1!
k ≤ (2M1 + (k − 1)N1,2)!

k ≤
[(

2n+ 2c1(k − 1) + x

k

)

!

]k

<

C′
2(k)n

k
2

(

2n

ke

)2n+2c1(k−1)+x

= C′(k)nc′(k)

(

2n

ke

)2n

.

Таким образом

µ‖Ni,j‖k
i,j=1

<
C′(k)nc′(k)

(

2n
ke

)2n

2M

k
∏

i=1

Mi!C
′′(k,M)nc′′(k,M)

(

2n

k(k − 1)e

)n
≤

C0(k,M)nc0(k,M)

(

k − 1

k

)n (

2n

e

)n

.

Как известно, число P (m, k) представлений неотрицательного целого чис-
ла m в виде упорядоченной суммы k неотрицательных целых чисел равно
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(

m+ k − 1

k − 1

)

. Поэтому на k помеченных вершинах существует

(

M + k − 1

k − 1

)(n−M +
k(k − 1)

2 − 1

k(k − 1)
2 − 1

)

≤ C3(k,M)nc3(k)

различных псевдографов, имеющих n ребер, M из которых являются петлями.
Таким образом,

µ=(M, 1, N1, . . . , Nk) < C0(k,M)nc0(k,M)

(

k − 1

k

)n (

2n

e

)n

|N(M ;N1, . . . , Nk)| ≤

C4(k,M)nc4(k,M)

(

k − 1

k

)n (

2n

e

)n

.

Поскольку A(M,R) ⊆ A(R) = {(α0, . . . , αM )|
M
∑

i=0

αi = R}, то

∑

A(M,R)

M
∏

i=0

1

αi!
≤ 1

R!

∑

A(R)

R!

α1! . . . αM !
=
MR

R!
.

Поэтому по формуле (4)

µ=(M,R,N1, . . . , Nk) ≤
∑

A(M,R)

M
∏

i=0

[µ=(i, 1, N1, . . . , Nk)]αi

αi!
<

C5(k,M,R)nc5(k,M,R)

(

k − 1

k

)Rn (

2n

e

)Rn

.

Наконец, по формуле (3)

µ≤(M,R,N1, . . . , Nk)

µ(N,R)
=

M
∑

i=0

µ=(i, R,N1, . . . , Nk)

µ(N,R)
<

M
∑

i=0

C5(k,M,R)nc5(k,M,R)
(

k − 1
k

)Rn (

2n
e

)Rn

C(R)
(

2n
e

)Rn
≤ C(k,M,R)nc(k,M,R)

(

k − 1

k

)Rn

,

что и требовалось доказать. �

Следствие 2. В условиях леммы 3 при (k − 1)R < kR−2 для любого M при
достаточно больших N почти все графы из M(N,R) содержат более M одно-
цветных ребер относительно любого разбиения множества V на k цветовых
классов.

Доказательство. 2n-элементное множество V можно разбить на k цветовых
классов k2n различными способами. Следовательно, отношение числа графов
из M(N,R), имеющих не более M одноцветных ребер относительно хотя бы
одного разбиения множества V на k цветовых классов, к общему числу графов
в M(N,R) не превосходит

k2nµ≤(M,R,N1, . . . , Nk)

µ(N,R)
< k2nC(k,M,R)nc(k,M,R)

(

k − 1

k

)Rn

=
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C(k,M,R)nc(k,M,R)

(

(k − 1)R

kR−2

)n

→ 0 при n→ ∞,

что и требовалось доказать. �

Следствие 3. Для любого g ≥ 3 существует обыкновенный граф G c макси-
мальной степенью вершин ∆(G) ≤ 6 и обхватом не менее g, который имеет
хроматическое число χ(G) ≥ 4.

Доказательство. В силу леммы 2 все условия леммы 3 для k = 3 и R = 6 вы-
полнены. Кроме того (k − 1)R = 64 < 81 = kR−2. Поэтому в силу следствия 2
при достаточно большихN почти все графы из M(N, 6) содержат больше 2·5!6g

одноцветных ребер относительно любого разбиения множества V на 3 цвето-
вых класса. В силу следствия 1 для достаточно больших N больше половины
графов из M(N, 6) содержат каждый не более 2 · 5!6g циклов длины меньше
g. Следовательно, при достаточно больших N в M(N, 6) найдется граф G, ко-
торый содержит не более 2 · 5!6g циклов длины меньше g и который имеет
больше 2 · 5!6g одноцветных ребер относительно любого разбиения множества
V на 3 цветовых класса. Но тогда после удаления одного ребра из каждого цик-
ла графа G, имеющего длину меньше g, получится граф G′ с максимальной
степенью вершин ∆(G′) ≤ 6 и с обхватом не менее g, в котором относительно
каждого разбиения множества V на 3 цветовых класса найдется хотя бы одно
одноцветное ребро. Это означает, что χ(G) ≥ 4, что и требовалось. �

В заключение автор выражает свою глубокую благодарность А. В. Косточ-
ке и Д. Г. Фон-Дер-Флаассу за помощь, оказанную во время подготовки этой
работы к опубликованию.
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[1] B. Grünbaum, A problem in graph coloring, Amer. Math. Monthly, 77:10 (1970), 1088-1092.
[2] O. V. Borodin, A.V. Kostochka, On an upper bound of a graph’s chromatic number, depending

on the graph’s degree and density, J. Combinatorial Theory Ser. B, 23 (1977), 247–250.
[3] A. V. Kostochka, Degree, girth and chromatic number, Combinatorics (Proc. Fifth Hungar-

ian Colloq., Keszthely, 1976), Vol. II, 679–696, Colloq. Math. Soc. Ja’nos Bolyai, 18, North-
Holland, Amsterdam-New York, 1978.

[4] J.-H. Kim, On Brooks’ theorem for sparse graphs, Combin. Probab. Comput., 4 (1995), 97–132
[5] А. В. Косточка, Н.П. Мазурова, Одна оценка в теории раскраски графов, Методы дис-

кретного анализа в решении комбинаторных задач, 30 (1977), С. 23-29.

Владимир Александрович Ташкинов

Институт математики им. С. Л. Соболева СО РАН,

пр. академика Коптюга 4,

630090, Новосибирск, Россия

E-mail address: valet@math.nsc.ru


