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М. С. ШЕРЕМЕТ

Abstract. A complete and sound, relative to the notion of validity

introduced by T. Evans, set of inference rules is constructed for identities

of partial algebras.

В настоящей работе исследуется понятие истинности тождеств на частичных
алгебрах, введенное Т. Эвансом [1]. Известно, что для алгебр с частичными опе-
рациями истинность формального равенства термов может быть естественно
определена более чем одним способом. Пусть tA[v] обозначает значение терма
t (если оно определено) на частичной алгебре A при означивании переменных
v. В различных работах по частичным алгебрам можно встретить следующие
варианты определения истинности тождеств:

— тождество s ≈ t называется истинным сильно на частичной алгебре A, если
для любого означивания переменных v значения sA[v] и tA[v] определены и
совпадают (см., например, [2]);

— тождество s ≈ t называется истинным слабо на A, если для любого озна-
чивания v из того, что значения sA[v] и tA[v] определены, следует, что они
совпадают (см. [3, 2]);

— тождество s ≈ t называется истинным (по Клини) на A, если для любого
означивания v из того, что одно из значений sA[v] и tA[v] определено, следует,
что определено другое и они совпадают (см. [3, 4]).

Для всех перечисленных выше случаев полные и корректные системы правил
вывода были построены, см. [5, 6, 4] соответственно.
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В настоящей работе мы следуем определению, данному в [1], которое отли-
чается от упомянутых выше. Нестрого говоря, тождество α считается истин-
ным на частичной алгебре A, если основные операции A нельзя доопределить
согласно α. Формальное определение состоит в следующем. Тождество s ≈ t
называется истинным на частичной алгебре A (обозначается A � s ≈ t) если
для любого означивания переменных v выполняются следующие условия:

— если значения sA[v] и tA[v] определены, то они совпадают;
— если s имеет вид f(s0, . . . , sm−1) для некоторого символа опе-
рации f и значения tA[v] и sAi [v], i < m, определены, то значение
sA[v] также определено;
— если t имеет вид g(t0, . . . , tn−1) для некоторого символа опе-
рации g и значения sA[v] и tAi [v], i < n, определены, то значение
tA[v] также определено (см. [1, стр. 66]).

Определение, введенное Т. Эвансом, было направлено на решение следую-
щей задачи: можно ли для произвольного многообразия V полных алгебр ука-
зать способ аксиоматизации класса всех частичных подалгебр алгебр из V?
Задача такого рода возникла в связи с его исследованиями по разрешимости
проблемы равенства слов [1, 7]. Оказывается, что если Σ — базис тождеств мно-
гообразия V, то истинность Σ на частичной алгебре A является необходимым
(а в определенных случаях и достаточным) условием того, что A является “ча-
стью” некоторой алгебры из V. (В этой связи следует упомянуть также работу
А. И. Мальцева [8].)

В настоящей работе строится полная и корректная система правил вывода
тождеств для данного понятия истинности.

Автор выражает глубокую благодарность Л. Л. Максимовой за постоянное
внимание к работе и полезные обсуждения, а также за многочисленные заме-
чания, позволившие улучшить изложение.

Автор также весьма признателен рецензенту, указавшему несколько суще-
ственных исправлений.

1.. Основные определения. Доказательство корректности. Пусть Ω —
произвольная функциональная сигнатура. Всюду далее под алгеброй понима-
ется частичная алгебра сигнатуры Ω. Таким образом, алгебра A — это множе-
ство A вместе с семейством fA (f ∈ Ω) частичных функций на A. Зафиксируем
также некоторое счетное множество переменных X и пусть T обозначает мно-
жество всех термов сигнатуры Ω от переменных из X .

Пусть A — алгебра и v : X → A — произвольное отображение. Для терма
t ∈ T стандартным образом определяется его значение tA[v] в алгебре A при
означивании v:

если t ∈ X , то значение tA[v] определено и равно v(t);

если t = f(t0, . . . , tn−1), где f ∈ Ω, то значение tA[v] определено и равно
элементу a ∈ A тогда и только тогда, когда все значения tAi [v] определены и
значение частичной функции fA на элементах tA0 [v], . . . , tAn−1[v] определено и
равно a.

Если t ∈ T и w : X → T , то t[w] обозначает результат подстановки в t терма
w(x) вместо переменной x (для всех x ∈ X). В этом случае t[w] совпадает со
значением tT [w], где T — полная алгебра всех Ω-термов от переменных X . Если
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S — множество термов, то S[w] обозначает множество {t[w] | t ∈ S}. Конечные
последовательности вида u0, . . . , un часто будем обозначать кратко u.

Для s, t ∈ T рассмотрим множество термов Ev(s, t), определенное следую-
щим образом:

Ev(s, t) =

{

{s, t}, если t — переменная;
{s, t0, . . . , tn−1}, если t = f(t0, . . . , tn−1), f ∈ Ω.

Тогда A � s ≈ t равносильно следующему условию: для любого отображения
v : X → A если все термы из Ev(s, t) или все термы из Ev(t, s) определены в
A при означивании v, то значения sA[v] и tA[v] определены и совпадают.

Рассмотрим правила Rf , Sy и Rp, определенные по следующим схемам.

Rf :
∅

x ≈ x
(x ∈ X); Sy :

s ≈ t

t ≈ s
(s, t ∈ T );

Rp :
u0 ≈ v0, . . . , un−1 ≈ vn−1

f(u0, . . . , un−1) ≈ f(v0, . . . , vn−1)
(ui, vi ∈ T, f ∈ Ω).

Пусть также SbEv обозначает правило, определенное схемой

s ≈ t

s[v] ≈ t[v]
(s, t ∈ T, v : X → T ),

где на v накладываются следующие условия: если s — переменная, то v(s) —
также переменная или s входит в t; если t — переменная, то v(t) — также
переменная или t входит в s.

ЛЕММА 1. Правила Rf , Sy, Rp и SbEv сохраняют истинность тождеств.

Доказательство. Для правил Rf и Sy утверждение леммы очевидно. Рассмот-
рим правило Rp. Пусть A � u0 ≈ v0, . . . , un−1 ≈ vn−1. И пусть значения термов
f(u0, . . . , un−1) и v0, . . . ,vn−1 определены на алгебре A при некотором означива-
нии w : X → A. Тогда по предположению uA

i [w] = vAi [w], i < n. Следовательно,
значение f(v)A[w] определено и равно f(u)A[w].

Рассмотрим правило SbEv. Пусть A � s ≈ t и x0, . . . , xm−1 — в точности все
переменные, входящие в s или в t. Тогда при выполнении условий в правиле
SbEv получаем, что для каждого i < m либо терм v(xi) является собственным
подтермом терма s[v] или терма t[v], либо v(xi) = s[v] = t[v]. Предположим, что
все термы из множества Ev(s[v], t[v]) (или из множества Ev(t[v], s[v]) ) опреде-
лены в алгебре A при некотором означивании w : X → A. Тогда получим, в
частности, что определены все значения v(xi)

A[w], i < m. Рассмотрим про-
извольное отображение w′ : X → A для которого w′(xi) = v(xi)

A[w], i < m.
Тогда в алгебре A при означивании w′ будут определены все термы из мно-
жества Ev(s, t) (из множества Ev(t, s), соответственно). Поскольку A � s ≈ t,
получаем, что определены значения sA[w′] = s[v]A[w], tA[w′] = t[v]A[w] и они
совпадают. �

Тождество s ≈ t назовем неправильным справа, если t — переменная и t не
входит в s. Будем говорить, что тождество s ≈ t неправильное, если s ≈ t или
t ≈ s является неправильным справа; в противном случае тождество s ≈ t
будем называть правильным.
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Таким образом, что если s ≈ t — правильное тождество, то для любого
отображения v : X → T переход s ≈ t

/

s[v] ≈ t[v] является применением прави-

ла SbEv. Отметим, что для рассматриваемого нами понятия истинности тож-
деств ни правило подстановки (без ограничений) ни правило транзитивности
действительно не являются корректными.

Пример 1. Пусть f и g — различные символы операций, скажем, одномест-
ные, а x и y — различные переменные. Тогда тождество f(x) ≈ g(y) может
быть получено из тождества f(x) ≈ y по правилу подстановки. С другой сто-
роны, если A — одноэлементная алгебра, на которой операция fA определена,
а операция gA — нет, то A � f(x) ≈ y, но A�/ f(x) ≈ g(y). Таким образом,
истинность второго тождества не следует из истинности первого.

Пример 2. Определим следующую алгебру: N = (N ;⊕,⊖,⊗, s), где N —
множество всех натуральных чисел, s — одноместная операция взятия после-
дующего элемента, а ⊕, ⊖ и ⊗ — двуместные операции сложения, вычитания и
умножения соответственно. Операции s, ⊕ и ⊗ определены всюду, а результат
операции (m ⊖ n) определен тогда и только тогда, когда m > n.

Рассмотрим терм 0(x) = x⊖x, а для n ∈ N \ {0} пусть n(x) обозначает терм
s( . . . s(x ⊖ x)...) полученный n-кратным применением операции s к терму
(x⊖ x). Тогда для каждого n ∈ N терм n(x) задает на N всюду определенную
постоянную функцию, принимающую значение n.

Рассмотрим теперь следующие термы:

u(x) = 2(x) ⊖ x,

v(x) = u(x) ⊗ u(x),

t(x) = x ⊖ 1(x),

w(x) = 1(x) ⊖ t(x).

Тогда области определения термов u(x) и v(x) на N равны {0, 1, 2}, терма
t(x) — {1, 2, 3, . . .}, а терма w(x) — {1, 2}. Непосредственной проверкой можно
убедиться, что имеют место соотношения N � u(x) ≈ w(x) и N � w(x) ≈ v(x),
но неверно, что N � u(x) ≈ v(x).

Перечисленные в лемме 1 четыре правила не образуют полной системы пра-
вил вывода тождеств. Чтобы сформулировать недостающие правила, нам по-
требуются некоторые вспомогательные конструкции.

Для произвольных множества термов S и множества тождеств E обозначим:

↓S =: {t ∈ T | T — подтерм некоторого терма из S};
E∗ =: {t ≈ t | t ∈ T }∪{t ≈ s | s ≈ t ∈ E}∪E — рефлексивно-симметричное

замыкание множества E;
ρE =: {(p[v], q[v]) | p ≈ q ∈ E∗, v : X → T } — отношение, полученное из

E∗ с помощью произвольных подстановок.

Теперь зададим на множестве всех термов T оператор замыкания ClE по пра-
вилу: ClE(S) =

⋃

n∈ω Sn, S ⊆ T , где множества Sn строятся по индукции следу-
ющим образом. Полагаем S0 = ↓S и для n ∈ ω терм t принадлежит множеству
Sn+1 тогда и только тогда, когда выполняется одно из условий (1) или (2):

t = s(q0, . . . , qm−1) для некоторых пар (p0, q0), . . . , (pm−1, qm−1) ∈ ρE

и терма s(x0, . . . , xm−1) таких, что s(p0, . . . , pm−1), q0, . . . , qm−1 ∈ Sn;
(1)

t = q[w] для некоторого тождества p ≈ q ∈ E∗ и отображения w :
X → T таких, что Ev(p, q)[w] ⊆ Sn.

(2)

Заметим, что Sn ⊆ Sn+1 для всех n, поскольку пары вида (t, t) и тождества
t ≈ t принадлежат отношению ρE и множеству E∗ соответственно.
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Отношение ρE ∩ (ClE(S))2 будем обозначать ρES .
Основное свойство оператора ClE — в следующей лемме.

ЛЕММА 2. Пусть E — множество тождеств, S — множество термов и
пусть t ∈ ClE(S). Предположим, что все термы из S определены в алгебре A
при означивании v : X → A и A � E. Тогда значение tA[v] также определено.

Доказательство. Пусть ClE(S) =
⋃

n∈ω Sn как в определении. Поскольку S0 =
↓S, при t ∈ S0 доказывать нечего. Пусть для некоторого n значения всех термов
из Sn определены в A при означивании v, рассмотрим t ∈ Sn+1.

Пусть выполняется (1). Тогда для каждого i < m найдутся тождество si(x) ≈
ti(x) ∈ E∗ и последовательность термов ui такие, что pi = si(ui), qi = ti(ui). По-
лучаем, что A � si(x) ≈ ti(x) и по предположению значения термов s(s0(u0), . . . ,
sm−1(um−1)), t0(u0), . . . , tm−1(um−1) определены в A при означивании v. По-
этому si(ui)

A[v] = ti(ui)
A[v], и значение терма t = s(t0(u0), . . . , tm−1(um−1))

также определено в A при означивании v.
Пусть выполняется (2). Тогда A � p ≈ q и по предположению все термы

из множества Ev(p, q)[w] определены в A при означивании v. Пусть x0, . . . ,
xm−1 — все переменные, входящие в p или в q. Тогда термы w(x0), . . . ,w(xm−1)
определены в A при означивании v. Рассмотрим произвольное отображение v′ :
X → A такое, что v′(xi) = w(xi)

A[v], i < m. Тогда все термы из Ev(p, q) будут
определены в A при означивании v′. Следовательно, значение q[w]A[v] = qA[v′]
также будет определено. �

ЛЕММА 3. Пусть E — множество тождеств, S — множество термов.
Тогда ↓ClE(S) ⊆ ClE(S).

Доказательство. Проверим по индукции, что ↓Sn ⊆ Sn, n ∈ ω.
При n = 0 имеем ↓S0 = ↓S = S0. Пусть ↓Sn ⊆ Sn выполняется для некото-

рого n, и пусть t′ — собственный подтерм t ∈ Sn+1. Предположим сначала, что
для t выполняется (1). Здесь возможны два случая:

а) t′ — подтерм некоторого qi. Тогда t′ ∈ ↓Sn ⊆ Sn ⊆ Sn+1;
б) t′ имеет вид r(q), где r(x) — подтерм s(x). Тогда r(p) ∈ ↓Sn ⊆ Sn и

получаем, что t′ ∈ Sn+1 по условию (1).
Предположим теперь, что для t выполняется (2). Тогда поскольку t′ 6= t,

получаем t′ ∈ ↓Ev(p, q)[w] ⊆ ↓Sn ⊆ Sn ⊆ Sn+1, что и требовалось. �

Непосредственно из определения следует

ЛЕММА 4. Пусть E — множество тождеств, S — множество термов и
пусть t ∈ ClE(S). Тогда t ∈ ClF (S) для некоторого конечного подмножества
F ⊆ E и всякая переменная, входящая в t, входит в некоторый терм из S.

Определим теперь новое правило TrEv согласно схеме

s0 ≈ s1, . . . , sn−1 ≈ sn, F

s0 ≈ sn

,

где F — конечное множество тождеств и s0, . . . , sn — термы, удовлетворяющие
условию s0, . . . , sn ∈ ClF (Ev(s0, sn)) ∩ ClF (Ev(sn, s0)).

Пусть также R обозначает правило, определенное схемой

t ≈ y, F

u ≈ v
,
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где t ≈ y — неправильное справа тождество, F — конечное множество тож-
деств, а u и v — термы такие, что t, u, v ∈ ClF (Ev(u, v)) ∩ ClF (Ev(v, u)).

ЛЕММА 5. Правила TrEv и R сохраняют истинность тождеств.

Доказательство. Рассмотрим правило TrEv. Пусть A � si ≈ si+1 (i < n), A �

F и предположим, что все термы из множества Ev(s0, sn) (или из множества
Ev(sn, s0) ) определены в алгебре A при означивании v. Тогда в силу леммы 2
и условия на правило TrEv получаем, что термы s0, . . . ,sn определены в A при
означивании v. Следовательно, sA0 [v] = . . . = sAn [v].

Рассмотрим правило R. Пусть A � F , A � t ≈ y и предположим, что все
термы из множества Ev(u, v) (или из множества Ev(v, u) ) определены в ал-
гебре A при означивании w. Тогда в силу леммы 2 и условия на правило R
получаем, что термы t, u, v определены в A при означивании w. Посколь-
ку переменная y не входит в t, значение tA[w] определено при любом выборе
w(y) ∈ A. А поскольку A � t ≈ y, получаем, что A одноэлементна. Следова-
тельно, uA[w] = vA[w]. �

2.. Построение алгебры, заданной соотношениями на определенность

термов. Пусть SV обозначает правило вывода, определенное схемой

s ≈ t

s[v] ≈ t[v]
(s, t ∈ T, v : X → X).

Правило SV является частным случаем правила SbEv, поэтому сохраняет ис-
тинность тождеств. Для множества тождеств E ∪ {p ≈ q} пусть E 
 p ≈ q
обозначает, что p ≈ q выводится из E по правилам Rf , Sy, Rp и SV . Заме-
тим, что для любых термов t(x0, . . . , xn−1), u0, . . . , un−1 и v0, . . . , vn−1 тожде-
ство t(u) ≈ t(v) выводится из тождеств u0 = v0, . . . , un−1 ≈ vn−1 с помощью
нескольких применений правила Rp. В частности, любое тождество вида t ≈ t
выводится (из пустого множества тождеств) с помощью Rf и Rp.

ЛЕММА 6. Пусть E — множество тождеств, S — множество термов
и пусть Y — множество всех переменных, входящих в термы из S. Тогда
существуют алгебра A и означивание v : X → A со следующими свойствами.

1) A � E, A порождается множеством v(Y ) и для терма t от пере-
менных из Y значение tA[v] определено тогда и только тогда, когда
t ∈ ClE(S).

2) Если для термов s и t от переменных из Y значения sA[v] и tA[v]
определены и совпадают, то

(3)
существуют термы pi, qi и отображения vi : X → T (i 6 n) такие,
что pi[vi], qi[vi] ∈ ClE(S), E 
 pi ≈ qi (i 6 n) и s = p0[v0], qi[vi] =
pi+1[vi+1], i < n, qn[vn] = t.

ЗАМЕЧАНИЕ 7. В приводимом ниже доказательстве леммы 6 мы по-
строим по множествам E и S определенную алгебру, обозначим ее AES, и
докажем, что алгебра A = AES вместе с некоторым означиванием v удо-
влетворяет требованиям леммы. Кроме того, мы докажем, что построение
алгебры AES однозначно определяется отношением ρES (см. стр. 28) в сле-
дующем смысле: если мы возьмем произвольные множество тождеств E′ и
множество термов S′, для которых ρE′S′ = ρES, то алгебры AE′S′ и AES

будут совпадать.
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Доказательство. Обозначим U = ClE(S). Определим на множестве T отно-
шение ϕ :

ϕ =
{(

r(p0, . . . , pm−1), r(q0, . . . , qm−1)
)

∣

∣ r(x0, . . . , xm−1) ∈ T,

(p0, q0), . . . , (pm−1, qm−1) ∈ ρE

}

.

Очевидно, что ϕ рефлексивно и симметрично. Проверим следующее его свой-
ство:

(4)
если (s0, t0), . . . , (sn−1, tn−1) ∈ ϕ и f ∈ Ω имеет арность n, то 1)
(f(s), f(t)) ∈ ϕ; 2)f(s), t0, . . . , tn−1 ∈ U влечет f(t) ∈ U .

Пусть (s0, t0), . . . , (sn−1, tn−1) ∈ ϕ. Тогда найдутся термы ri(x0, . . . , xm−1) и
пары (pj , qj) ∈ ρE (i < n, j < m) такие, что si = ri(p0, . . . , pm−1), ti =
ri(q0, . . . , qm−1). Более того, можно считать, что каждая переменная xj вхо-
дит в один из термов ri. Рассмотрим терм r(x) = f(r0(x), . . . , rn−1(x)). Тогда
(f(s), f(t)) = (r(p), r(q)) и эта пара принадлежит ϕ по определению. Далее,
пусть f(s), t0, . . . , tn−1 ∈ U . Тогда каждый qj является подтермом некоторого
ri(q), т. е. некоторого ti, и поэтому qj ∈ U . Согласно лемме 3 получаем, что
r(q) ∈ U , т. е. f(t) ∈ U .

Установим другое свойство отношения ϕ:

(5)
для любой пары (s, t) ∈ ϕ существуют термы p, q и отображение
v : X → T такие, что E 
 p ≈ q и s = p[v], t = q[v].

Действительно, пусть (s, t) ∈ ϕ. Тогда либо (s, t) ∈ ρE , либо s = r(s0, . . . ,
sn−1) и t = r(t0, . . . , tn−1) для некоторых пар (s0, t0), . . . , (sn−1, tn−1) ∈ ρE и
нетривиального терма r(x0, . . . , xn−1). В первом случае требуемое легко сле-
дует из определения отношения ρE . Предположим поэтому, что выполняется
второй случай. Снова, используя определение ρE , для каждого i < n мож-
но найти термы pi(xi), qi(xi) и последовательность термов ui такие, что E 


pi(xi) ≈ qi(xi) и si = pi(ui), ti = qi(ui). Поскольку правило SV допустимо, мож-
но считать, что последовательности x0, . . . ,xm−1 выбраны так, что никакие две
из них не содержат общих переменных. Рассмотрим термы p(x0, . . . , xn−1) =
r(p0(x0), . . . , pn−1(xn−1)) и q(x0, . . . , xn−1) = r(q0(x0), . . . , qn−1(xn−1)). Тогда
E 
 p(x0, . . . , xm−1) ≈ q(x0, . . . , xm−1) и можно сделать одновременную под-
становку x0 7→ u0, . . . , xm−1 7→ um−1, получая равенства s = p(u0, . . . , un−1),
t = q(u0, . . . , un−1).

Пусть θ — транзитивное замыкание отношения ϕ∩U2. Тогда θ рефлексивно,
симметрично, транзитивно и обладает следующим свойством:

если (p0, q0), . . . , (pn−1, qn−1) ∈ θ и f(p) ∈ U для некоторого f ∈ Ω,
то f(q) ∈ U и (f(p), f(q)) ∈ θ.

(6)

Проверим (6), пусть (p0, q0), . . . , (pn−1, qn−1) ∈ θ. Тогда для каждого i < n
найдутся r0

i , . . . , rmi

i ∈ U такие, что pi = r0
i ϕr1

i ϕ · · · ϕrmi

i = qi. Поскольку ϕ
рефлексивно, можно считать, что mi = m для всех i < n. Обозначим rj =
(rj

0, . . . , r
j
n−1), j 6 m. Тогда rj ∈ Un и p = r0, q = rm. Предположим, что f(p) ∈

U . Последовательно применяя (4) получаем: f(p)ϕf(r1)ϕ · · · ϕf(rm−1)ϕf(q)
и f(r1) ∈ U, . . . , f(rm−1) ∈ U , f(q) ∈ U , т. е. (f(u), f(v)) ∈ θ по определению.

В силу (6) на множестве A = U/θ можно определить алгебру A таким обра-
зом, что

(7) fA(p0/θ, . . . , pn−1/θ) = q/θ ⇔ f(p) ∈ U и q/θ = f(p)/θ
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для любых n ∈ ω, n-арного символа f ∈ Ω и элементов p0, . . . , pn−1, q ∈ U .
Тогда для любых m ∈ ω, терма t(x0, . . . , xm−1) и элементов p0, . . . , pm−1, q ∈ U
будет выполняться

(8) tA(p0/θ, . . . , pm−1/θ) = q/θ ⇔ t(p) ∈ U и q/θ = t(p)/θ.

Действительно, пусть t(x) имеет вид f(t0(x), . . . , tn−1(x)), где f ∈ Ω, и для
термов t0(x), . . . , tn−1(x) утверждение (8) выполняется. Введем обозначение
p/θ = (p0/θ, . . . , pm−1/θ). Тогда поскольку U замкнуто относительно подтер-
мов, согласно индукционному предположению получаем:

tA(p/θ) = q/θ ⇔

tAi (p/θ) определены и q/θ = fA
(

tA0 (p/θ), . . . , tAn−1(p/θ)
)

⇔

ti(p) ∈ U и q/θ = fA
(

t0(p)/θ, . . . , tn−1(p)/θ
)

⇔

ti(p), f
(

t0(p), . . . , tn−1(p)
)

∈ U и q/θ = f
(

t0(p), . . . , tn−1(p)
)

/θ ⇔

t(p) ∈ U и q/θ = t(p)/θ.

Возьмем произвольное отображение v : X → A такое, что v(y) = y/θ, y ∈ Y .
Проверим, что A и v обладают требуемыми свойствами. Из (8) сразу следу-
ет, что для терма t от переменных из Y значение tA[v] определено тогда и
только тогда, когда t ∈ U . Очевидно также, что множество v(Y ) порождает
A. Покажем, что A � E. Пусть p ≈ q ∈ E∗ и в алгебре A при некотором
означивании w определены все термы из Ev(p, q) или все термы из Ev(q, p).
Поскольку q ≈ p также принадлежит E∗, будем считать, что выполняется
первый случай. Рассмотрим произвольное отображение u : X → U , для ко-
торого w(x) = u(x)/θ, x ∈ X . Тогда по предположению все термы из множе-
ства Ev(p, q)[u] определены в A при означивании v. Согласно (8) получаем,
что Ev(p, q)[u] ⊆ U . Поскольку (p, q) ∈ E∗, согласно лемме 3 отсюда следует,
что p[u], q[u] ∈ U . Снова применяя (8) получаем, что определены значения
pA[w] = p[u]/θ и qA[w] = q[u]/θ. Но (p[u], q[u]) ∈ ρE ∩ U2 ⊆ θ, поэтому эти
значения совпадают.

Пусть теперь s и t — произвольные термы от переменных из Y и значения
sA[v] и tA[v] определены и равны. Тогда согласно (8) получаем (s, t) ∈ θ, т. е.
s = s0 ϕs1 ϕ · · · ϕsn+1 = t для некоторых s0, . . . , sn+1 ∈ U . Следовательно, в
силу (5) найдутся термы pi, qi, и отображения vi (i 6 n) такие, что s = p0[v0],
qi[vi] = si+1 = pi+1[vi+1], i < n, qn[vn] = t и E 
 pi ≈ qi (i 6 n). Получаем, что
условие (3) выполняется.

Проверим теперь утверждение замечания 7. Приведенное построение алгеб-
ры A определяется однозначно множеством термов U и эквивалентностью θ.
Далее, θ является транзитивным замыканием отношения ϕ ∩ U2 и, поскольку
U замкнуто относительно подтермов, получаем:

ϕ ∩ U2 =
{(

r(p0, . . . , pm−1), r(q0, . . . , qm−1)
)

∈ U2
∣

∣

r(x0, . . . , xm−1) ∈ T, (p0, q0), . . . , (pm−1, qm−1) ∈ ρE ∩ U2
}

.

Таким образом, A однозначно строится по U и отношению ρES = ρE ∩ U2. А
поскольку U является проекцией ρES , скажем, на первую координату, задание
последнего отношения определяет построение алгебры A однозначно. �
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В дальнейшем алгебру A и означивание v, построенные в лемме 6 по мно-
жеству тождеств E и множеству термов S будем обозначать AES и vES соот-
ветственно.

Согласно следствию 8 ниже, аналогично случаю полных алгебр можно ска-
зать, что в классе всех частичных алгебр, удовлетворяющих тождествам E,
алгебра AES определяется соотношениями “все термы из S определены”.

Напомним, что гомоморфизмом из алгебры A в алгебру B называется отоб-
ражение ϕ : A → B, удовлетворяющее условию

если значение fA(a0, . . . , an−1) определено и равно an для некоторых
a0, . . . ,an ∈ A и f ∈ Ω, то значение fB(ϕ(a0), . . . , ϕ(an−1)) определено
и равно ϕ(an).

(9)

СЛЕДСТВИЕ 8. Пусть E — множество тождеств, S — множество тер-
мов и Y — множество всех переменных, входящих в какой-либо терм из
S. Предположим, что все термы из S определены в некоторой алгебре B
при означивании w и, кроме того, B � E. Тогда существует гомоморфизм
ϕ : AES → B такой, что ϕ(vES(y)) = w(y) для любого y ∈ Y .

Доказательство. Пусть U = ClE(S), A = AES и v = vES . Согласно лем-
ме 6 (1) имеем A = {tA[v] | t ∈ U}, где все указанные значения определены. А
согласно лемме 2 все значения tB[w] также определены. Докажем, что правило
ϕ(tA[v]) = tB[w], t ∈ U , корректно определяет отображение ϕ из A в B. Пусть
sA[v] = tA[v] для некоторых s, t ∈ U . Тогда согласно лемме 6 (2) выполняется
условие (3), см. стр. 29. Применяя лемму 2 получаем, что значения всех термов
pi[vi] и qi[vi], i 6 n, определены в алгебре B при означивании w. А поскольку
B � E, по лемме 1 получаем, что B � pi ≈ qi, i 6 n. Следовательно, все зна-
чения pi[vi]

B[w], qi[vi]
B[w], i 6 n, совпадают. В частности, sB[w] = tB[w], что и

требовалось.
Проверим, что ϕ является гомоморфизмом. Пусть ai и f как в (9). То-

гда ai = tAi [v] для подходящих термов ti ∈ U (i < n), поэтому значение
f(t0, . . . , tn−1)

A[v] определено. Согласно лемме 6 (1) получаем, что f(t0, . . . ,
tn−1) ∈ U , поэтому значение f(t0, . . . , tn−1)

B[w] определено согласно лемме 2.
Таким образом,

ϕ(fA(a0, . . . , an−1)) = ϕ(f(t0, . . . , tn−1)
A[v]) =

= f(t0, . . . , tn−1)
B[w] = fB(ϕ(a0), . . . , ϕ(an−1)).

�

3.. Доказательство полноты.

ЛЕММА 9. Пусть E — множество правильных тождеств и E 
 p ≈ q.
Тогда p ≈ q — правильное тождество.

Доказательство. Всякое тождество вида t ≈ t и всякое тождество симмет-
ричное правильному является правильным. Далее, тождества, полученные по
правилу Rp, всегда имеют вид s ≈ t, где s, t ∈ T \X . Такие тождества являются
правильными и, кроме того, остаются правильными после применения правила
SV . Наконец, если x ∈ X и тождество s ≈ x — правильное, тогда x входит в s.
Поэтому, применяя правило SV , мы снова получим правильное тождество. �
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ЛЕММА 10. Пусть E — множество тождеств и E1 — множество пра-
вильных тождеств из E. Пусть также S — множество термов такое, что
ClE(S) не содержит термов вида s[v], где s ≈ y ∈ E∗ неправильное справа и
v : X → T . Тогда ClE(S) = ClE1

(S).

Доказательство. Очевидно, что в доказательстве нуждается только включе-
ние ClE(S) ⊆ ClE1

(S). Пусть ClE(S) =
⋃

n∈ω Sn как в определении. Предпо-
ложим, что Sn ⊆ ClE1

(S) для некоторого n ∈ ω (заметим, что для n = 0 это
верно). Пусть t ∈ Sn+1, докажем, что t ∈ ClE1

(S).
Пусть выполняется (1) и пусть pi = si[vi], qi = ti[vi], где si ≈ ti ∈ E∗ и

vi : X → T (i < m). Тогда никакое из тождеств si ≈ ti не может быть непра-
вильным, поскольку pi, qi ∈ ClE(S), i < m. Следовательно, все эти тождества
принадлежат (E1)

∗ и поэтому t ∈ ClE1
(S).

Пусть выполняется (2). Тогда p[w], q[w] ∈ ClE(S), поэтому тождество p ≈ q
не может быть неправильным. Следовательно, p ≈ q ∈ (E1)

∗ и t ∈ ClE1
(S). �

Для множества тождеств E ∪{p ≈ q} пусть E � p ≈ q обозначает, что A � E
влечет A � p ≈ q для любой алгебры A. Пусть также E ⊢ p ≈ q обозначает,
что p ≈ q выводится из E при помощи правил Rf , Sy, Rp, SbEv, TrEv и R.
Напомним, что правило SV является частным случаем правила SbEv, поэтому
из E 
 p ≈ q следует E ⊢ p ≈ q.

ТЕОРЕМА. Для любого множества тождеств E ∪ {p ≈ q} выполняется

E � p ≈ q ⇔ E ⊢ p ≈ q.

Доказательство. Импликация справа налево следует из лемм 1 и 5. Обратно,
пусть E � p ≈ q. Положим S = {p, q}, S′ = Ev(p, q) и S′′ = Ev(q, p). Рассмотрим
алгебру A = AES′ и означивание v = vES′ . Тогда A � E и все термы из
Ev(p, q) определены в A при означивании v. Поскольку E � p ≈ q получаем,
что значение qA[v] также определено. Заметим также, что всякая переменная,
входящая в p или в q, входит в некоторый терм из S′. Следовательно, согласно
лемме 6 (1) получаем, что q ∈ ClE(S′), откуда ClE(S) = ClE(S′). Аналогично,
рассматривая AES′′ и vES′′ получаем, что ClE(S) = ClE(S′′). Далее возможны
два случая.

Случай 1: существуют неправильное справа тождество t ≈ y ∈ E∗ и отобра-
жение v : X → T такие, что t[v] ∈ ClE(S). Согласно лемме 4 найдутся конечные
подмножества E′, E′′ ⊆ E, для которых t[v] ∈ ClE′(S′) и t[v] ∈ ClE′′(S′′). Пусть
z — произвольная переменная, не входящая в t[v], и F = E′ ∪ E′′. Тогда t ≈ y
выводится из E по правилам Rf и Sy, переход t≈ y

/

t[v]≈ z осуществляется

по правилу SbEv, терм t[v] принадлежит множеству ClF (S′) ∩ ClF (S′′) и по
правилу R получаем t(u)≈ z, F

/

p ≈ q.
Случай 2: случай 1 не имеет места, т. е. если для некоторых тождества

s ≈ t ∈ E∗ и отображения v : X → T выполняется s[v] ∈ ClE(S), то s ≈
t является правильным справа. Пусть E1 обозначает множество правильных
тождеств из E. Тогда согласно лемме 10 и доказанному выше ClES = ClE1

S =
ClES′ = ClE1

S′ = ClES′′ = ClE1
S′′. Докажем, что ρES = ρE1S . Действительно,

включение ρE1S ⊆ ρES очевидно. С другой стороны, если (p[v], q[v]) ∈ ρES , где
p ≈ q ∈ E∗, то p[v], q[v] ∈ ClE(S) и, следовательно, тождество p ≈ q является
правильным по условию случая 2. Поэтому (p[v], q[v]) ∈ ρE1S .
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Согласно замечанию 7 алгебры AES и AE1S совпадают, в частности, AE1S �

E. Пусть A = AE1S и v = vE1S . Поскольку E � p ≈ q, получаем A � p ≈ q и
поэтому согласно лемме 6 (1) значения pA[v] и qA[v] определены и совпадают.
Следовательно, согласно лемме 6 (2) существуют термы pi, qi и отображения
vi : X → T , i 6 n, для которых pi[vi], qi[vi] ∈ ClE1

(S), E1 
 pi ≈ qi, i 6 n, и
p = p0[v0], qi[vi] = pi+1[vi+1], i < n, qn(un) = q. Согласно лемме 9 все тождества
pi ≈ qi являются правильными. Поэтому переход pi ≈ qi

/

pi[vi]≈ qi[vi] является

применением правила SbEv. Обозначим si = pi[vi], 1 6 i 6 n. Тогда тождества
p ≈ s1, si ≈ si+1 (1 6 i 6 n), sn ≈ q выводятся из E с помощью Rf , Sy, Rp и
SbEv. Далее, используя лемму 4 можно найти конечное подмножество F ⊆ E1,
для которого p, s1, . . . , sn, q ∈ ClF (S′). Тогда переход

p ≈ s1, s1 ≈ s2, . . . , sn ≈ q, F

p ≈ q

является применением правила TrEv. �
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