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ДОСТАТОЧНЫЕ УСЛОВИЯ 2-ДИСТАНЦИОННОЙ
∆ + 1 РАСКРАШИВАЕМОСТИ ПЛОСКИХ ГРАФОВ

О.В.БОРОДИН, А.Н.ГЛЕБОВ, А.О.ИВАНОВА, Т.К.НЕУСТРОЕВА, В.А.ТАШКИНОВ

Abstract. A trivial lower bound for the 2-distance chromatic number

χ2(G) of any graph G with maximum degree ∆ is ∆ + 1. We prove that

if G is planar and its girth is at least 7, then χ2(G) = ∆ + 1 whenever

∆ ≥ 30. On the other hand, we construct planar graphs with girth 5 and

6 that have arbitrarily large ∆ and χ2(G) > ∆ + 1.

1. Введение

Через V (G) и E(G) обозначим множества вершин и ребер графа G, соответ-
ственно. Раскраска f : V (G) → {1, 2, . . . , k} графа G называется 2-дистанцион-
ной, если любые две вершины на расстоянии не более 2 окрашены в разные
цвета. Наименьшее число цветов в 2-дистанционных раскрасках графа G на-
зывается 2-дистанционным хроматическим числом графа G и обозначается
через χ2(G). Задача 2-дистанционной раскраски возникает в приложениях; в
частности, она является одной из основных моделей в проблеме распределения
радиочастот в сетях мобильного телефонирования. В самой теории графов из-
вестна старая (1977) гипотеза Г. Вегнера [4] о том, что χ2(G) ≤ ⌊ 3

2∆⌋ + 1
любого плоского графа G c максимальной степенью ∆ (см. также монографию
Т. Р. Йенсена и Б. Тофта [3, п. 2.18]). Наилучшей из опубликованных верх-
них оценок для произвольных плоских графов является χ2(G) ≤ ⌈ 9

5∆⌉+ 1 при
∆ ≥ 47 (О.В. Бородин и др. [1]).
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Очевидно, что χ2(G) ≥ ∆+1 для любого графа G (ввиду того, что в любом
графе есть звезда K1,∆). В [2] в частности доказано, что если G — плоский и его
обхват g (т.е. длина минимального цикла) не меньше 9, то χ2(G) = ∆ + 1 при
∆ ≥ 16. В настоящей работе полностью решен вопрос о том для сколь малых g

можно гарантировать равенство χ2(G) = ∆ + 1 путем наложения ограничения
на ∆, а именно доказана

Теорема 1. Пусть G — планарный граф, тогда χ2(G) = ∆ + 1, если g = 8,
∆ ≥ 15, либо g = 7, ∆ ≥ 30, но существуют графы с g ≤ 6, для которых
χ2(G) > ∆ + 1 при произвольно большом ∆.

2. Доказательство теоремы 1

Пусть граф G′ — контрпример к теореме 1. Пусть далее G — наименьший
по числу ребер граф со свойствами: ∆(G) ≤ ∆, g(G) = g ≥ g(G′), χ2(G) >

∆ + 1. Множество графов с этими свойствами непусто, так как, например,
G′ всеми ими обладает. Доказательство теоремы 1 состоит в доказательстве
несуществования графа G, что противоречит сделанному нами предположению
о существовании графа G′.

Не нарушая общности, можно считать, что граф G связен. Обозначим через
δ его минимальную степень. Легко видеть, что δ ≥ 2.

Формулу Эйлера |V | − |E| + |F | = 2 запишем в виде

((g − 2)|E| − g|V |) + (2|E| − g|F |) = −2g,

где F — множество граней графа G.
Отсюда

∑

v∈V

(g − 2

2
d(v) − g

)

+
∑

f∈F

(r(f) − g) < 0, (1)

где d(v) — степень вершины v, а r(f) — ранг грани f . Положим заряд µ(v)

каждой вершины v графа G равным g−2
2 d(v)− g, а заряд µ(f) каждой грани f

графа G равным r(f) − g. Заметим, что заряд 2-вершины при всех g равен -2,
а заряды вершин степени не менее 3 и всех граней неотрицательны.

Для каждого значения ∆ мы опишем ряд структурных свойств графа G,
опираясь на которые перераспределим заряды вершин и граней так, чтобы их
новые заряды стали неотрицательными. Поскольку сумма зарядов вершин и
граней при перераспределении сохраняется, мы получим противоречие с (1),
что и завершит доказательство теоремы 1.

Заметим, что в силу минимальности G граф, полученный из него удалением
ребра, имеет требуемую раскраску (напомним, что ∆ — максимальная степень
графа G′, а не графа G). Легко видеть, что если мы сможем перекрасить концы
этого ребра в цвета, не встречающиеся на смежных вершинах и вершинах на
расстоянии 2 от соответствующего конца, то полученная раскраска будет 2-
дистанционной. Удаленное ребро на рисунке будем перечеркивать.

Под k-цепью далее будем понимать цепь, состоящую из в точности k вершин
степени 2, а под (k1, . . . , kd)-вершиной понимается d-вершина, инцидентная d

различным цепям, где i-я цепь (1 ≤ i ≤ d) содержит не менее ki вершин степе-
ни 2.
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Для всех ∆ ≥ 15 справедливы структурные свойства:

Лемма 1. В G не существует ≥ 3-цепи, ограниченной хотя бы с одной сто-
роны вершиной степени меньше ∆.

Доказательство. На рис. 1 удаленное ребро перечеркивается и первой
красится вершина, помеченная N1 (∆ ограничений на выбор цвета), а второй
— N2 (4 ограничения). �

d tt
N2

v : d(v) ≤ ∆ − 1

d t
N1





Рис. 1.

Следствие 1′. В G не существует ≥ 4-цепи.

Лемма 2. В G нет двух ∆-вершин, соединенных двумя 3-цепями.

Доказательство. На рис. 2 показана сводимость данной конфигурации,
где u и v имеют степень ∆. Удалим перечеркнутое ребро и обесцветим вершины
v1, v2 и v3. Пусть z окрашена в цвет 1. Заметим, что v1 нельзя покрасить лишь
в том случае, когда на ∆-вершине u и смежных с ней вершинах встречаются
все ∆ цветов (т.е. для v1 остается только цвет 1). В этом случае перекрасим
вершину x в 1 (это всегда возможно, так как вершина y находится на рассто-
янии 2 от z, а следовательно, не окрашена в 1), а v1 — в освободившийся цвет,
затем красим v2 и v3 (4 ограничения на выбор цвета). �
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Рис. 2.

2.1. Случай g = 8.

Вершину v будем называть средней, если d(v) < ∆, а µ(v) ≥ 2d(v), и млад-
шей, если 0 < µ(v) < 2d.

Будем использовать следующие четыре правила перераспределения заря-
дов:

R1: Любая вершина v с d(v) ≥ 3 отдает заряд k каждой k-цепи, из нее
исходящей.

Правило R1 дополняется следующим:
R1′: Любая ∆-вершина отдает заряд 1

2 вершине типа (2,2,0), если они со-
единены 2-цепью.

R2: Любая средняя и ∆-вершина отдает:
(a) заряд 1 другому концу u каждой инцидентной ей 1-цепи, если u — млад-

шая,
(b) заряд 2 — смежной младшей вершине w, за исключением случая когда

w смежна с двумя ∆-вершинами и получает от них по 3
2 вместо 2.
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Две цепи с общим концом, лежащие на границе некоторой грани, будем
называть соседними.

R3: ∆-вершина, инцидентная двум соседним 3-цепям получает заряд 1 от
грани f , инцидентной этим цепям.

Пусть (2,2,0)-вершина u лежит в границе грани f вместе со своими 2-цепями,
а v — другой конец одной из этих цепей, тогда будем называть v и f особыми
(см. рис. 3).
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Рис. 3.

R4: Особая ∆-вершина v получает от инцидентной ей особой грани f за-
ряд 1, если r(f) ≥ 10 и 1

2 , если r(f) = 9.

Заряды вершины v и грани f , оставшиеся у них после применения правил,
обозначим через µ∗(v) и µ∗(f), соответственно.

2.1.1. Проверка того, что µ∗(f) ≥ 0.

Напомним, что µ(f) = r(f) − 8 и по лемме 2 в G нет двух ∆-вершин, соеди-
ненных двумя 3-цепями. Пусть r — ранг грани f .

При r ≥ 12 грань f по правилам R3, R4 отдает инцидентным ей ∆-вершинам
заряд 1 не более чем ⌊ r

3⌋ раз, откуда µ∗(f) ≥ r−8−⌊ r
3⌋×1 ≥ r−8− r

3 = 2
3r−8 ≥ 0.

При 10 ≤ r ≤ 11, грань f по правилам R3, R4 отдает 1 не более двух раз, а
значит µ∗(f) ≥ 2 − 2 × 1 = 0. При r = 9, грань f по правилу R4 отдает 1

2 не
более 2 раз, поэтому µ∗(f) ≥ 1 − 2 × 1

2 = 0.

2.1.2. Проверка того, что µ∗ ≥ 0 для средних и ∆-вершин.

Рассмотрим среднюю вершину v. Напомним, что µ(v) ≥ 2d, а следовательно
d(v) ≥ 8. По правилам R1, R2 и лемме 1 вершина v отдает по каждой цепи не
более 2 единиц заряда, т. е. µ∗(v) ≥ 2d − d × 2 = 0.

Пусть далее v — вершина степени ∆. Нам понадобится следующее струк-
турное свойство:

Лемма 3. В G нет 2-цепи, соединяющей (2,2,0)-вершину с вершиной степени
меньше, чем ∆.

Доказательство. На рис. 4 показана сводимость данной конфигурации. �
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Рис. 4.

Назовем 2-цепь особой, если она инцидентна (2,2,0)-вершине.
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Для подсчета µ∗(v) усредним заряды, передаваемые вершиной v инцидент-
ным ей цепям по правилам R1–R2 так, чтобы каждая цепь забирала от v не
более 5

2 , и при этом не менее 1
2 вернулось вершине v от инцидентных цепей и

≥ 9-граней. Поскольку µ(v) = 3∆−8 ≥ 5
2∆− 1

2 , тем самым будет доказано, что
µ∗(v) ≥ 0.

Предположим, что v сначала отдает 5
2 по каждой инцидентной ей цепи,

независимо от ее длины. Тогда 3-цепи не хватает 1
2 , а 0-цепь, 1-цепь и неосо-

бая 2-цепь (далее будем называть такие цепи короткими) имеют избыточный
заряд 1

2 согласно правилам R1–R2.
Этот заряд короткая цепь направляет вокруг v по и против часовой стрелки

по 1
4 следующим образом. Если рядом оказывается 3-цепь, то она и получает

эту 1
4 , а если особая цепь, то заряд проходит через нее дальше. Когда встреча-

ются две 1
4 , идущие от коротких цепей, то их общий заряд 1

2 получает v. Кроме
того, если v смежна с некоторой вершиной, которая в свою очередь смежна с
другой ∆-вершиной, то 0- или 1-цепь P отдает заряд 1

2 вершине v. Ясно, что в
итоге все 0-, 1- и 2-цепи забирают от v по 5

2 .
Заряд 1, получаемый вершиной v по правилам R3 и R4, распределим сле-

дующим образом: 1
2 грань отдает вершине v и по 1

4 направляет вокруг v по
и против часовой стрелки. Аналогично заряду 1

4 , направленному короткой це-
пью, заряд 1

4 , идущий от грани, также достается 3-цепи, исходящей из v или
самой вершине v.

Покажем теперь, что 3-цепь P и ∆-вершина v всегда получат недостающий
им заряд 1

2 .
Допустим, что за P в выбранном направлении следует также 3-цепь, тогда

по лемме 2 они образуют грань f ранга не менее 9, а значит P получает 1
4 от

f согласно правилам усреднения. Если же за P следует любая короткая цепь,
то P получает от нее 1

4 в направлении, противоположном выбранному.
Пусть, наконец, за P следует особая цепь Q, т. е. 2-цепь, ведущая из v в

(2,2,0)-вершину. На рис. 5 показаны возможные варианты. В случае (a) цепь P

получает заряд 1
4 от особой грани. Случай (b) мы разбиваем на подварианты

в зависимости от того, какая цепь следует за цепью Q: 3-цепь, короткая или
особая. Если за Q следует особая или 3-цепь, то P получает заряд 1

4 от особой
грани по правилам усреднения, а если за Q следует короткая, то P получает 1

4
от этой короткой цепи. Этим заканчивается доказательство того, что после
усреднения каждая 3-цепь получает недостающую ей 1

2 .
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Рис. 5.

Поскольку µ(v) = 3d − 8 ≥ 5
2∆ при любом ∆ ≥ 16, то остается показать,

что при ∆ = 15 вершина v получит хотя бы один раз заряд 1
2 согласно пра-

вилам усреднения. Действительно, это верно, если в окружении вершины v
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встречается пара соседних коротких цепей, либо пара соседних 3-цепей. Отсю-
да следует, что если в окружении v нет особой цепи, то такая пара найдется
из-за нечетности числа 15.

Пусть теперь в окружении v встречается особая цепь Q, входящая в особую
грань f , а P — вторая цепь, инцидентная v и f . Если r(f) ≥ 10, то v получает 1
по R4, а после усреднения — не менее 1

2 . Если же r = 9, то v получает 1
2 от f

по правилу R4, и эта 1
2 при усреднении не затрагивается.

Наконец предположим, что r = 8, тогда возникает два случая: P является
1- или 0-цепью. В каждом из них v получает 1

2 от P по правилам усреднения.

2.1.3. Проверка того, что µ∗ ≥ 0 для младших и 2-вершин.

Из определения следует, что младшими являются вершины, для которых
3 ≤ d(v) ≤ 7. Напомним, что младшая вершина отдает по каждому ребру
заряд 1 или 2 вершинам степени 2 согласно правилу R1. В свою очередь, она
может получить заряд 1, 2 или 3

2 от средних или ∆-вершин согласно правилу
R2 и 1

2 по правилу R1′.

Лемма 4. В G нет младшей вершины v типа (2, 1, . . . , 1).

Доказательство. На рис. 6 показана сводимость данной конфигурации. �

t d d�
����

HHHHH
t

tq
q

q�
�

N1N2

Рис. 6.

Лемма 5. В G нет младшей вершины v типа (2, . . . , 2, 1, 0), смежной с млад-
шей вершиной.

Доказательство. См рис. 7. �
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Рис. 8

Лемма 6. В G нет младшей вершины v типа (1, . . . , 1), соединенной по 1-цепи
с другой младшей вершиной.
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Доказательство. См рис. 8. �

Учитывая леммы 4–6 и равенство µ(v) = 3d − 8 ≥ 2d − 5, нам остает-
ся рассмотреть младшие вершины типов (2, . . . , 2, 0), (2, . . . , 2, 1, 0), (1, . . . , 1),
(2, . . . , 2, 0, 0) и (1, . . . , 1, 0).

Пусть v — вершина типа (2, . . . , 2, 0). При d ≥ 6 имеем µ(v) ≥ 2d−2, поэтому
возьмем 3 ≤ d ≤ 5. Рассмотрим сначала вершину степени 3. Согласно лемме 3
и правилу R1′ вершина типа (2,2,0) получает 2× 1

2 и 2 — по лемме 5 и правилу
R2, а отдает 2× 2 по R1. Отсюда µ∗(v) ≥ 1− 2× 2+2× 1

2 +2 = 0. Пусть теперь
4 ≤ d ≤ 5. Тогда к имеющейся величине заряда 3-вершины добавляется 3(d−3),
а, согласно правилу R1, вычитается 2(d−3), т. е. прибавляется положительная
величина. Значит µ∗(v) ≥ 1 − 2 × 1

2 + 2 × 2 + 2 + (3 − 2)(d − 3) ≥ 0.
Пусть v — вершина типа (2, . . . , 2, 1, 0). При d ≥ 5 имеем µ(v) ≥ 2d − 3,

поэтому рассмотрим 3 ≤ d ≤ 4. Тогда по лемме 5, правилам R1, R2, имеем:
µ∗(v) ≥ 1 − 2 − 1 + 2 + (3 − 2)(d − 3) ≥ 0.

Возьмем вершину типа (1, . . . , 1). При d ≥ 4 имеем µ(v) ≥ d. Отсюда, ввиду
леммы 6 и правил R1, R2, для d = 3 имеем: µ∗(v) ≥ 1 − 3 + 3 > 0.

Возьмем вершину типа (2, . . . , 2, 0, 0). При d ≥ 4: µ(v) ≥ 2d − 4. Откуда для
d = 3, ввиду конфигурации на рис. 9 (a) и исключения в правиле R2b, имеем
µ∗(v) ≥ 1 − 2 + 3

2 > 0.
Пусть наконец v — типа (1, . . . , 1, 0). Для d ≥ 4: µ(v) ≥ d−1, тогда при d = 3,

ввиду конфигурации на рис. 9 (b) и правил R1, R2, имеем µ∗(v) ≥ 1−2+1 = 0.
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Рис. 9.

Пусть теперь v — вершина степени 2. Согласно правилу R1 каждая k-цепь
получает заряд 2k, который можно равномерно распределить по ее k вершинам
степени 2. Отсюда µ∗ = −2 + 2 = 0.

2.2. Случай g = 7.

Вершину v назовем младшей, если 2 < d(v), а µ(v) < 2d(v), средней, если
2d(v) ≤ µ(v) < 9

4d(v), и старшей, если µ(v) ≥ 9
4d(v). Нетрудно видеть, что

младшими являются вершины степени от 3 до 13, средними — от 14 до 27, а
старшими — от 28 и выше.

Перераспределим заряды вершин и граней по следующим правилам:
R1: (a) Младшая вершина v отдает инцидентной ей k-цепи заряд 1, если

k = 1 и заряд 2, если k ≥ 2;
(b) Средняя или старшая вершина v любой инцидентной ей цепи отдает

заряд 2 или 9
4 , соответственно.

Обозначим через ρ1 сумму зарядов, полученных цепью от ее концов по R1.
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R2: Любая цепь отдает инцидентной ей 2-вершине v заряд 1
2 , если v смежна

с двумя 2-вершинами и заряд 2, если v смежна хотя бы одной вершине степени
не менее 3.

Через ρ2 будем обозначать заряд цепи, оставшийся после применения пра-
вила R2.

R3: Если ≤ 1-цепь C и соседняя с ней 3-цепь инцидентны 7-грани f , то C

отдает грани f заряд 3
8 .

Пусть ρ3 — заряд цепи, оставшийся после применения правила R3.
R4: (a) Если ≤ 2-цепь C соединяет младшую вершину v с вершиной степени

не менее 14, то v получает заряд ρ3 от C.
(b) Пусть ≤ 1-цепь C соединяет две немладшие вершины u и w. Если сре-

ди соседних с C цепей имеется хотя бы одна ≤ 2-цепь, ведущая в младшую
вершину, то C раздает ρ3 поровну концам таких цепей.

Обозначим через ρ4 заряд цепи, оставшийся после применения правила R4.
R4′: Если ρ4 > 0, то цепь отдает каждому из своих концов по ρ4

2 .
R5: (a) Каждая грань f с r(f) ≥ 8, инцидентная двум соседним 2-цепям,

ведущим из младшей вершины v в ≥ 14-вершины, отдает вершине v заряд 1.
(b) Любая грань отдает заряд 3

4 центральной вершине инцидентной ей 3-
цепи.

2.2.1. Проверка того, что µ∗(f) ≥ 0.

Пусть f — грань ранга r. Ее граница разбивается на цепи, ограниченные с
обеих сторон вершинами степени не менее 14. Чтобы оценить расход зарядов
грани f по правилу R5, представим, что по каждому из правил заряд дается
не на вершину, а равномерно распределяется по ребрам соответствующей цепи.

Тогда по правилу R5а каждое ребро получает 1
6 , а по R5b —

3

4

4 = 3
16 . Тогда

любое ребро на границе грани f может получить от f от 0 до 3
16 . Заметим, что

r−7
r

≥ 3
16 при r ≥ 9, откуда µ∗ ≥ r−7− r× 3

16 ≥ 0. Остается рассмотреть грани
ранга 7 и 8.

Если r = 7 и f не инцидентна 3-цепи, то µ∗ = r − 7 = 0, так как в этом
случае f не фигурирует в правиле R5b. Если r = 7 и f инцидентна 3-цепи, то
µ∗ = r − 7 + 2× 3

8 − 3
4 = 0 по правилам R3, R5b и ввиду того, что в G нет двух

∆-вершин, соединенных 3- и 2-цепью. Доказательство последнего утверждения
аналогично доказательству леммы 2, с той лишь разницей, что в данном случае
вершины v3 не будет (см. рис. 2).

Пусть, наконец, r = 8, тогда µ(f) = 1. Если грань f делает передачу по
правилу R5, то, ввиду леммы 2, она единственная (по R5a или R5b), поэтому
µ∗ ≥ 1 − 1 = 0.

2.2.2. Проверка того, что µ∗ ≥ 0 для средних и старших вершин.

Пусть v — средняя вершина, тогда вершина v отдает каждой инцидентной
цепи заряд 2 (по R1b), а значит µ∗(v) ≥ 2d(v) − 2 × d(v) = 0. Аналогично,
при d(v) ≥ 28 вершина v отдает каждой инцидентной цепи заряд 9

4 , откуда
µ∗(v) ≥ 5

2d(v) − 7 − d(v) × 9
4 ≥ 0.

2.2.3. Нижняя оценка ρ3 для ≤ 2-цепи C.

Согласно правилу R4 младшие вершины получают от инцидентной и сосед-
ней цепи (определенного типа) некоторый положительный заряд. Определим
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нижнюю оценку для заряда ρ3 цепи C не более, чем с двумя 2-вершинами. Для
этого оценим не сам заряд ρ3, а ρ′3 — часть заряда ρ3, получаемого от одно-
го конца. Будем рассматривать цепи, ограниченные хотя бы одной немладшей
вершиной, так как цепи, ограниченные младшими вершинами, зарядов не пе-
редают.

Пусть C — 0-цепь с концами v и w. Если вершина v — средняя, то C при
данном конце по правилу R3 зарядов не расходует, отсюда ρ′3 = 2 согласно
R1b. Если вершина v — старшая, но не ∆-вершина, то, аналогично, ρ′3 = 9

4 .
Наконец, v — ∆-вершина, тогда ρ′3 может принимать следующие значения: 9

4 ,
15
8 и 3

2 , в зависимости от количества передач заряда 3
8 на 7-грани по правилу

R3. Следовательно, если w — младшая, то от 0-цепи она получает не менее 3
2 .

Рассмотрим теперь 1-цепь C с концами v и w. Положим C отдает 2-вершине
заряд 1 от полученного ей заряда по R1. Если вершина v — средняя, то ρ′3 = 1
по правилам R1b и R2 (передачи заряда 3

8 на грани нет). Если вершина v —
старшая, но не ∆-вершина, то ρ′3 = 5

4 (аналогично случаю средней вершины).
Если вершина v — ∆-вершина, то ρ′3 может принимать следующие значения:
5
4 , 7

8 и 1
2 . Таким образом, если w — младшая, то от 1-цепи она получает не

менее 1
2 .

Лемма 7. В G не существует 2-цепи, соединяющей младшую вершину v с
вершиной степени не более ∆ − 1.

Доказательство. Cм. рис. 10. �

dt
N1

v v1 v2

d t
w : d(w) ≤ ∆ − 1

N2





Рис. 10.

Пусть C — 2-цепь с концами v и w, тогда положим, что v — ∆-вершина.
Цепь C получает от v заряд 9

4 по правилу R1b и отдает на 2-вершины заряд
2, а значит ρ′3 = 1

4 . Следовательно, если w — младшая, то она получает 1
4 от

2-цепи C .
Замечание. Если 0- или 1-цепь ограничена двумя немладшими вершинами,

то оставшаяся согласно R4 у цепи сумма зарядов полностью распределяется
по правилам R4b и R4′.

2.2.4. Проверка того, что µ∗ ≥ 0 для младших и 2-вершин.

Младшая вершина отдает, согласно правилу R1, заряд 1 или 2 каждой ин-
цидентной цепи, в зависимости от количества 2-вершин на соответствующей
цепи. Будем рассматривать лишь те (k1, . . . , kd)-вершины v, у которых общее
количество 2-вершин на инцидентных цепях больше µ(v). Не нарушая общно-
сти, положим, что k1 ≥ k2 ≥ · · · ≥ kd.

Заметим, что леммы 4-6 справедливы при g = 7, поэтому начнем проверку с
вершины v типа (1, . . . , 1), не являющейся (2, 1, . . . , 1)-вершиной. Каждая инци-
дентная ей 1-цепь C, согласно лемме 6, ограничена с другой стороны средней
или старшей вершиной. Если на конце цепи C стоит средняя или старшая вер-
шина, не являющаяся ∆-вершиной, то v получает не менее 1 от C по правилу
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R4a, а если — ∆-вершина, то v получает 5
4 от C согласно R3 и R4a. Следова-

тельно, µ∗(v) ≥ 5
2d − 7 − d × 1 + d × 1 > 0 при d(v) ≥ 3.

Пусть v — вершина типа (2, . . . , 2, 0), не являющаяся (2, . . . , 2, 1)-вершиной,
тогда сначала предположим, что d(v) = 3. Она получает заряд 1

4 от каждой
инцидентной 2-цепи по правилу R4a и лемме 7. Кроме того 0-цепь, инцидентная
v, ограничена с другой стороны немладшей вершиной (по лемме 5), и поэтому
отдает v не менее 2 по правилу R4a (0-цепь зарядов по R3 не отдает). По
правилу R5a грань f с r(f) ≥ 8, инцидентная v и двум ее соседним 2-цепям,
отдает v заряд 1, а если r(f) = 7, то вершина v получает заряд не менее 3

2
от 0-цепи на границе f , ограниченной двумя ∆-вершинам, по правилу R4b.
Таким образом, µ∗(v) ≥ 1

2 − 2× 2 + 2× 1
4 + 2 + 1 = 0 для d(v) = 3. При d(v) ≥ 4

рассуждаем аналогично, так как при увеличении степени v на 1 заряд будет
увеличиваться на 5

2 , а число 2-цепей — на 1, отсюда µ∗(v) ≥ 1
2 − 2× 2 + 2× 1

4 +

2 + 1 + (d − 3) × (5
2 − 2) > 0.

Рассмотрим вершину v типа (2, . . . , 2, 1, 0), не являющуюся (2, . . . , 2, 0)-вер-
шиной. Она получает заряд 1

4 от каждой инцидентной 2-цепи по правилу R4a
и лемме 7. Пусть d(v) = 3, тогда 0-цепь C, исходящая из v, ограничена старшей
вершиной ввиду конфигурации на рис.11. Если C не делает передач заряда на
грани по R3, то v получает заряд 9

4 от C по R4a, а значит µ∗(v) ≥ 1
2 − 3 + 1

4 +

+ 9
4 = 0. Допустим, что C делает передачу заряда 3

8 на 7-грань, инцидентную
1-цепи, исходящей из v, тогда эта 1-цепь ограничена с другой стороны ∆-вер-
шиной. В этом случае v получает заряд не менее 1

2 от 1-цепи по R4a, а значит
µ∗(v) ≥ 1

2 −3+ 1
4 + 15

8 + 1
2 > 0. Для 4 ≤ d(v) ≤ 5 верна лемма 5, тогда ввиду того,

что µ(v) ≥ 2d−5, имеем µ∗(v) ≥ 2d−5−(2d−3)+(d−2)× 1
4 + 3

2 ≥ 0. Пусть теперь
d(v) ≥ 6, тогда µ(v) ≥ 2d− 4, отсюда µ∗(v) ≥ 2d− 4− (2d− 3) + (d− 2)× 1

4 > 0.
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Рис. 12.

Пусть v — вершина типа (2, . . . , 2, 0, 0), не являющаяся (2, . . . , 2, 1, 0)-вер-
-шиной. При 3 ≤ d(v) ≤ 5 сводима конфигурация на рис. 12, поэтому v полу-
чает хотя бы от одной 0-цепи заряд не менее 3

2 по правилу R4a. Заметим, что
µ(v) ≥ 2d − 11

2 при d(v) ≥ 3, а значит µ∗(v) ≥ 2d − 11
2 − (d − 2) × 2 + 3

2 = 0.
Если d(v) ≥ 6, то µ∗(v) ≥ 2d − 4 − (d − 2) × 2 = 0.



ДОСТАТОЧНЫЕ УСЛОВИЯ 2-ДИСТАНЦИОННОЙ РАСКРАШИВАЕМОСТИ 139

Если v - (. . . , 1, 1, 0)-вершина и 3 ≤ d(v) ≤ 5, то сводима конфигурация
на рис. 13 (a). Допустим, что 0-цепь C, инцидентная v, ограничена младшей
вершиной, тогда каждая соседняя с ней 1-цепь, исходящая из v, отдает v заряд
не менее 1 по правилу R4a, а значит µ∗(v) ≥ 2d− 11

2 − (d−3)×2−2+2×1 > 0.
Пусть C ограничена средней или старшей вершиной, тогда v получает не менее
3
2 от C по правилу R4a, отсюда µ∗(v) ≥ 2d − 11

2 − (d − 3) × 2 − 2 + 3
2 = 0. Если

d(v) ≥ 6, то µ∗(v) ≥ 2d − 4 − (d − 3) × 2 − 2 = 0.
Пусть теперь v — (. . . , 1, 0, 0)-вершина, не являющаяся (. . . , 1, 1, 0)-вершиной,

тогда при d(v) ≥ 4 заряд µ(v) ≥ 2d−5, а v отдает инцидентным цепям не более
2d−5. Если d(v) = 3, то v получает не менее 1

2 от 1-цепи или не менее 3
2 хотя бы

от одной 0-цепи по правилу R4a, ввиду конфигурации на рис. 13 (b). Отсюда
µ∗(v) ≥ 1

2 − 1 + 1
2 = 0.
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Рис. 13.

Рассмотрим наконец вершину v типа (. . . , 0, 0, 0), не являющуюся (. . . , 1, 0, 0)-
вершиной, тогда µ∗(v) ≥ 2d − 11

2 − (d − 3) × 2 > 0 при d(v) ≥ 3.
Остается рассмотреть 2-вершину v. Согласно следствию 1′, в графе G нет

≥ 4-цепей. Если вершина v смежна с хотя бы одной ≥ 3-вершиной, то она по-
лучает заряд 2 от инцидентной цепи по правилу R2. Если v смежна с двумя
2-вершинами, то это означает, что v является центральной вершиной 3-цепи.
Поэтому она получает заряд 1

2 от 3-цепи по R2 и заряд 3
4 от каждой инцидент-

ной грани по правилу R5b. Таким образом, µ∗(v) ≥ −2 + 1
2 + 2 × 3

4 = 0.

2.3. Случай g ≤ 6.

На рис.14 и 15 приведены примеры плоских графов с обхватом 6 и 5, со-
ответственно, таких что χ2(G) > ∆ + 1 при произвольном ∆, а ранее были
известны такие графы с обхватом 4 и 3 ([4], [3, п. 2.18]).
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Заметим, что при четном ∆ в приведенном на рис. 14 графе, имееются толь-
ко вершины степени 2 и ∆. В нечетном случае добавляем вершину w степени
3, инцидентные ребра которой обозначены на рисунке пунктиром. Пусть ни
одна из вершин v1, v2, v3 не окрашена в 1, тогда цвет 1 должен встречаться на
одной из смежных с vi вершинах, где 1 ≤ i ≤ 3 (например так, как показано
на рисунке). Поскольку v имеет степень ∆, то либо она сама, либо одна из
смежных с ней вершин должна быть окрашена в 1, что невозможно.
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Рис. 15.

Ввиду того, что на ∆-вершине u1 и ей смежных вершинах встречаются все
возможные цвета (∆ + 1), вершину u2 нельзя покрасить (см. рис.15).

Теорема 1 доказана.
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