 |
1 |
Ajith, P., Iyer, B.R.,
Robinson, C.A.K., and Sathyaprakash, B.S., “New class of
post-Newtonian approximants to the waveform templates of
inspiralling compact binaries: Test mass in the Schwarzschild
spacetime”, Phys. Rev. D, 71, 044029-1-21, (2005). Related online version
(cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0412033.
|
 |
2 |
Anderson, J.L., and
DeCanio, T.C., “Equations of hydrodynamics in general relativity in
the slow motion approximation”, Gen. Relativ.
Gravit., 6, 197-238, (1975).
|
 |
3 |
Apostolatos, T.A.,
Cutler, C., Sussman, G.J., and Thorne, K.S., “Spin-induced orbital
precession and its modulation of the gravitational waveforms from
merging binaries”, Phys. Rev. D, 49,
6274-6297, (1994).
|
 |
4 |
Arun, K.G., Blanchet,
L., Iyer, B.R., and Qusailah, M.S., “The 2.5PN gravitational wave
polarisations from inspiralling compact binaries in circular
orbits”, Class. Quantum Grav.,
21, 3771, (2004). Related online
version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0404185. Erratum Class. Quantum
Grav., 22, 3115, (2005).
|
 |
5 |
Arun, K.G., Iyer,
B.R., Qusailah, M.S., and Sathyaprakash, B.S., “Probing the
non-linear structure of general relativity with black hole
mergers”, (2006). URL (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0604067.
|
 |
6 |
Arun, K.G., Iyer, B.R.,
Sathyaprakash, B.S., and Sundararajan, P.A., “Parameter estimation
of inspiralling compact binaries using 3.5 post-Newtonian
gravitational wave phasing: The nonspinning case”, Phys. Rev. D, 71,
084008-1-16, (2005). Related online version (cited on 26 April
2006):
http://arXiv.org/abs/gr-qc/0411146.
|
 |
7 |
Barker, B.M., and
O’Connell, R.F., “Gravitational two-body problem with arbitrary
masses, spins, and quadrupole moments”, Phys.
Rev. D, 12, 329-335, (1975).
|
 |
8 |
Barker, B.M., and
O’Connell, R.F., “The gravitational interaction: Spin, rotation,
and quantum effects - A review”, Gen.
Relativ. Gravit., 11, 149-175,
(1979).
|
 |
9 |
Baumgarte, T.W.,
“Innermost stable circular orbit of binary black holes”,
Phys. Rev. D, 62, 024018-1-8, (2000).
|
 |
10 |
Bekenstein, J.D.,
“Gravitational Radiation Recoil and Runaway Black Holes”,
Astrophys. J., 183, 657-664, (1973).
|
 |
11 |
Bel, L., Damour, T.,
Deruelle, N., Ibañez, J., and Martin, J., “Poincaré-invariant
gravitational-field and equations of motion of 2 point-like objects
- The post-linear approximtion of general-relativity”, Gen. Relativ. Gravit., 13, 963-1004, (1981).
|
 |
12 |
Blanchet, L., “Radiative
gravitational fields in general-relativity. II.
Asymptotic-behaviour at future null infinity”, Proc. R. Soc. London, Ser. A, 409, 383-399, (1987).
|
 |
13 |
Blanchet, L., Contribution à
l’étude du rayonnement
gravitationnel émis par un système isolé, Habilitation,
(Université Paris VI, Paris, France, 1990).
|
 |
14 |
Blanchet, L., “Time-asymmetric
structure of gravitational radiation”, Phys.
Rev. D, 47, 4392-4420, (1993).
|
 |
15 |
Blanchet, L.,
“Second-post-Newtonian generation of gravitational radiation”,
Phys. Rev. D, 51, 2559-2583, (1995). Related online version
(cited on 24 January 1995):
http://arXiv.org/abs/gr-qc/9501030.
|
 |
16 |
Blanchet, L., “Energy losses by
gravitational radiation in inspiralling compact binaries to 5/2
post-Newtonian order”, Phys. Rev. D,
54, 1417-1438, (1996).
|
 |
17 |
Blanchet, L.,
“Gravitational Radiation from Relativistic Sources”, in Marck,
J.A., and Lasota, J.P., eds., Relativistic
Gravitation and Gravitational Radiation, Proceedings of the
Les Houches School of Physics, held in Les Houches, Haute Savoie,
26 September - 6 October, 1995, 33-66, (Cambridge University Press,
Cambridge, U.K., 1997). Related online version (cited on 11 July
1996):
http://arXiv.org/abs/gr-qc/9607025.
|
 |
18 |
Blanchet, L., “Gravitational
radiation reaction and balance equations to post-Newtonian order”,
Phys. Rev. D, 55, 714-732, (1997). Related online version (cited
on 20 September 1996):
http://arXiv.org/abs/gr-qc/9609049.
|
 |
19 |
Blanchet, L.,
“Gravitational-wave tails of tails”, Class.
Quantum Grav., 15, 113-141,
(1998). Related online version (cited on 7 October 1997):
http://arXiv.org/abs/gr-qc/9710038.
|
 |
20 |
Blanchet, L., “On the
multipole expansion of the gravitational field”, Class. Quantum Grav., 15, 1971-1999, (1998). Related online version
(cited on 29 January 1998):
http://arXiv.org/abs/gr-qc/9710038.
|
 |
21 |
Blanchet, L.,
“Quadrupole-quadrupole gravitational waves”, Class. Quantum Grav., 15, 89-111, (1998). Related online version (cited
on 7 October 1997):
http://arXiv.org/abs/gr-qc/9710037.
|
 |
22 |
Blanchet, L.,
“Post-Newtonian Gravitational Radiation”, in Schmidt, B.G., ed.,
Einstein’s Field Equations and Their Physical Implications: Selected
Essays in Honour of Jürgen Ehlers, vol.
540 of Lecture Notes in Physics, 225-271, (Springer, Berlin,
Germany; New York, U.S.A., 2000).
|
 |
23 |
Blanchet, L.,
“Innermost circular orbit of binary black holes at the third
post-Newtonian approximation”, Phys. Rev.
D, 65, 124009, (2002). Related
online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0112056.
|
 |
24 |
Blanchet, L.,
“On the accuracy of the post-Newtonian approximation”, in
Ciufolini, I., Dominici, D., and Lusanna, L., eds., 2001: A Relativistic Spacetime Odyssey,
Proceedings of the Johns Hopkins Workshop on Current Problems in
Particle Theory 25, Firenze, 2001 (September 3-5), 411, (World
Scientific, River Edge, U.S.A., 2003). Related online version
(cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0207037.
|
 |
25 |
Blanchet, L.,
Buonanno, A., and Faye, G., “Higher-order spin effects in the
dynamics of compact binaries II. Radiation field”, in preparation,
(2006).
|
 |
26 |
Blanchet, L., and Damour, T.,
“Radiative gravitational fields in general relativity. I. General
structure of the field outside the source”, Philos. Trans. R. Soc. London, Ser. A,
320, 379-430, (1986).
|
 |
27 |
Blanchet, L., and Damour, T.,
“Tail-transported temporal correlations in the dynamics of a
gravitating system”, Phys. Rev. D,
37, 1410-1435, (1988).
|
 |
28 |
Blanchet, L., and Damour, T.,
“Post-Newtonian generation of gravitational waves”, Ann. Inst. Henri Poincare
A, 50, 377-408, (1989).
|
 |
29 |
Blanchet, L., and Damour, T.,
“Hereditary effects in gravitational radiation”, Phys. Rev. D, 46,
4304-4319, (1992).
|
 |
30 |
Blanchet, L., Damour,
T., and Esposito-Farèse, G., “Dimensional regularization of the
third post-Newtonian dynamics of point particles in harmonic
coordinates”, Phys. Rev. D,
69, 124007, (2004). Related online
version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0311052.
|
 |
31 |
Blanchet, L., Damour,
T., Esposito-Farèse, G., and Iyer, B.R., “Gravitational radiation
from inspiralling compact binaries completed at the third
post-Newtonian order”, Phys. Rev.
Lett., 93, 091101, (2004).
Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0406012.
|
 |
32 |
Blanchet, L., Damour,
T., Esposito-Farèse, G., and Iyer, B.R., “Dimensional
regularization of the third post-Newtonian gravitational wave
generation of two point masses”, Phys.
Rev. D, 71, 124004-1-36, (2005).
|
 |
33 |
Blanchet, L., Damour, T.,
and Iyer, B.R., “Gravitational waves from inspiralling compact
binaries: Energy loss and waveform to second-post-Newtonian order”,
Phys. Rev. D, 51, 5360-5386, (1995). Related online version
(cited on 24 January 1995):
http://arXiv.org/abs/gr-qc/9501029.
Erratum Phys. Rev. D,
54, 1860, (1996).
|
 |
34 |
Blanchet, L.,
Damour, T., and Iyer, B.R., “Surface-integral expressions for the
multipole moments of post-Newtonian sources and the boosted
Schwarzschild solution”, Class.
Quantum Grav., 22, 155, (2005). Related online version (cited on
26 April 2006):
http://arXiv.org/abs/gr-qc/0410021.
|
 |
35 |
Blanchet, L.,
Damour, T., Iyer, B.R., Will, C.M., and Wiseman, A.G.,
“Gravitational-Radiation Damping of Compact Binary Systems to
Second Post-Newtonian Order”, Phys. Rev.
Lett., 74, 3515-3518, (1995).
Related online version (cited on 23 January 1995):
http://arXiv.org/abs/gr-qc/9501027.
|
 |
36 |
Blanchet, L., and Faye,
G., “Hadamard regularization”, J. Math.
Phys., 41, 7675-7714, (2000).
Related online version (cited on 28 July 2000):
http://arXiv.org/abs/gr-qc/0004008.
|
 |
37 |
Blanchet, L., and Faye, G., “On
the equations of motion of point-particle binaries at the third
post-Newtonian order”, Phys. Lett. A,
271, 58-64, (2000). Related online
version (cited on 22 May 2000):
http://arXiv.org/abs/gr-qc/0004009.
|
 |
38 |
Blanchet, L., and Faye, G.,
“General relativistic dynamics of compact binaries at the third
post-Newtonian order”, Phys. Rev. D,
63, 062005-1-43, (2001). Related
online version (cited on 18 November 2000):
http://arXiv.org/abs/gr-qc/0007051.
|
 |
39 |
Blanchet, L., and Faye,
G., “Lorentzian regularization and the problem of point-like
particles in general relativity”, J. Math.
Phys., 42, 4391-4418, (2001).
Related online version (cited on 4 April 2001):
http://arXiv.org/abs/gr-qc/0006100.
|
 |
40 |
Blanchet, L., Faye,
G., Iyer, B.R., and Joguet, B., “Gravitational-wave inspiral of
compact binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65,
061501-1-5, (2002). Related online version (cited on 26 May
2001):
http://arXiv.org/abs/gr-qc/0105099.
|
 |
41 |
Blanchet, L., Faye, G., and
Nissanke, S., “Structure of the post-Newtonian expansion in general
relativity”, Phys. Rev. D,
72, 044024, (2005).
|
 |
42 |
Blanchet, L., Faye, G.,
and Ponsot, B., “Gravitational field and equations of motion of
compact binaries to 5/2 post-Newtonian order”, Phys. Rev. D, 58,
124002-1-20, (1998). Related online version (cited on 11 August
1998):
http://arXiv.org/abs/gr-qc/9804079.
|
 |
43 |
Blanchet, L., and
Iyer, B.R., “Third post-Newtonian dynamics of compact binaries:
Equations of motion in the center-of-mass frame”, Class. Quantum Grav., 20, 755, (2003). Related online version (cited on
26 April 2006):
http://arXiv.org/abs/gr-qc/0209089.
|
 |
44 |
Blanchet, L., and
Iyer, B.R., “Hadamard regularization of the third post-Newtonian
gravitational wave generation of two point masses”, Phys. Rev. D, 71,
024004, (2004). Related online version (cited on 26 April
2006):
http://arXiv.org/abs/gr-qc/0409094.
|
 |
45 |
Blanchet, L., Iyer,
B.R., and Joguet, B., “Gravitational waves from inspiralling
compact binaries: Energy flux to third post-Newtonian order”,
Phys. Rev. D, 65, 064005-1-41, (2002). Related online version
(cited on 26 May 2001):
http://arXiv.org/abs/gr-qc/0105098.
|
 |
46 |
Blanchet, L., Iyer, B.R.,
Will, C.M., and Wiseman, A.G., “Gravitational waveforms from
inspiralling compact binaries to second-post-Newtonian order”,
Class. Quantum Grav., 13, 575-584, (1996). Related online version (cited
on 13 February 1996):
http://arXiv.org/abs/gr-qc/9602024.
|
 |
47 |
Blanchet, L., and
Sathyaprakash, B.S., “Signal analysis of gravitational wave tails”,
Class. Quantum
Grav., 11, 2807-2831, (1994).
|
 |
48 |
Blanchet, L., and
Sathyaprakash, B.S., “Detecting a tail effect in gravitational-wave
experiments”, Phys. Rev. Lett.,
74, 1067-1070, (1995).
|
 |
49 |
Blanchet, L., and Schäfer,
G., “Higher-order gravitational-radiation losses in binary
systems”, Mon. Not. R. Astron. Soc.,
239, 845-867, (1989).
|
 |
50 |
Blanchet, L., and Schäfer,
G., “Gravitational wave tails and binary star systems”,
Class. Quantum Grav., 10, 2699-2721, (1993).
|
 |
51 |
Bollini, C.G., and
Giambiagi, J.J., “Lowest order “divergent” graphs in v-dimensional
space”, Phys. Lett. B, 40, 566-568, (1972).
|
 |
52 |
Bonazzola, S., Gourgoulhon,
E., and Marck, J.-A., “Numerical models of irrotational binary
neutron stars in general relativity”, Phys.
Rev. Lett., 82, 892, (1999).
Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/9810072.
|
 |
53 |
Bondi, H., van der
Burg, M.G.J., and Metzner, A.W.K., “Gravitational waves in general
relativity VII. Waves from axi-symmetric isolated systems”,
Proc. R. Soc. London, Ser. A,
269, 21-52, (1962).
|
 |
54 |
Bonnor, W.B., “Spherical
gravitational waves”, Philos. Trans. R. Soc.
London, Ser. A, 251, 233-271,
(1959).
|
 |
55 |
Bonnor, W.B., and
Rotenberg, M.A., “Transport of momentum by gravitational waves -
Linear approximation”, Proc. R. Soc. London,
Ser. A, 265, 109, (1961).
|
 |
56 |
Bonnor, W.B., and
Rotenberg, M.A., “Gravitational waves from isolated sources”,
Proc. R. Soc.
London, Ser. A, 289, 247-274,
(1966).
|
 |
57 |
Breitenlohner, P., and Maison, D., “Dimensional
renormalization and the action principle”, Commun. Math. Phys., 52, 11-38, (1977).
|
 |
58 |
Buonanno, A., Chen, Y.,
and Vallisneri, M., “Detecting gravitational waves from precessing
binaries of spinning compact objects: Adiabatic limit”,
Phys. Rev. D, 67, 104025-1-31, (2003). Related online version
(cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0211087.
|
 |
59 |
Buonanno, A., Chen,
Y., and Vallisneri, M., “Detection template families for
gravitational waves from the final stages of binary black-holes
binaries: Nonspinning case”, Phys. Rev.
D, 67, 024016, (2003). Related
online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0205122.
|
 |
60 |
Buonanno, A., and
Damour, T., “Effective one-body approach to general relativistic
two-body dynamics, ADM formalism”, Phys. Rev.
D, 59, 084006, (1999). Related
online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/9811091.
|
 |
61 |
Buonanno, A., and
Damour, T., “Transition from inspiral to plunge in binary black
hole coalescences”, Phys. Rev. D,
62, 064015, (2000). Related online
version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0001013.
|
 |
62 |
Burke, W.L., “Gravitational
radiation damping of slowly moving systems calculated using matched
asymptotic expansions”, J. Math.
Phys., 12(3), 401-418, (1971).
|
 |
63 |
Burke, W.L., and Thorne,
K.S., “Gravitational Radiation Damping”, in Carmeli, M., Fickler,
S.I., and Witten, L., eds., Relativity, Proceedings of the Relativity
Conference in the Midwest, held at Cincinnati, Ohio, June 2-6,
1969, 209-228, (Plenum Press, New York, U.S.A.; London, U.K.,
1970).
|
 |
64 |
Campbell, W.B., Macek, J.,
and Morgan, T.A., “Relativistic time-dependent multipole analysis
for scalar, electromagnetic, and gravitational fields”,
Phys. Rev. D, 15, 2156-2164, (1977).
|
 |
65 |
Campbell, W.B., and Morgan, T.A.,
“Debye Potentials For Gravitational Field”, Physica, 53(2), 264,
(1971).
|
 |
66 |
Chandrasekhar, S., “The
Post-Newtonian Equations of Hydrodynamics in General Relativity”,
Astrophys. J., 142, 1488-1540, (1965).
|
 |
67 |
Chandrasekhar, S., and Esposito,
F.P., “The 5/2-Post-Newtonian Equations of Hydrodynamics and
Radiation Reaction in General Relativity”, Astrophys. J., 160,
153-179, (1970).
|
 |
68 |
Chandrasekhar, S., and Nutku,
Y., “The Second Post-Newtonian Equations of Hydrodynamics in
General Relativity”, Astrophys. J.,
158, 55-79, (1969).
|
 |
69 |
Chicone, C., Kopeikin,
S.M., Mashhoon, B., and Retzloff, D.G., “Delay equations and
radiation damping”, Phys. Lett. A,
285, 17-26, (2001). Related online
version (cited on 2 May 2001):
http://arXiv.org/abs/gr-qc/0101122.
|
 |
70 |
Cho, H.T., “Post-Newtonian
approximation for spinning particles”, Class.
Quantum Grav., 15, 2465,
(1998). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/9703071.
|
 |
71 |
Christodoulou, D.,
“Nonlinear Nature of Gravitation and Gravitational-Wave
Experiments”, Phys. Rev. Lett.,
67, 1486-1489, (1991).
|
 |
72 |
Christodoulou, D., and
Schmidt, B.G., “Convergent and asymptotic iteration methods in
general-relativity”, Commun. Math.
Phys., 68, 275-289, (1979).
|
 |
73 |
Collins, J.C.,
Renormalization: An introduction to
renormalization, the renormalization group, and the operator-product expansion, (Cambridge
University Press, Cambridge, U.K.; New York, U.S.A., 1984).
|
 |
74 |
Cook, G.B., and Pfeiffer,
H.P., “Excision boundary conditions for black-hole initial data”,
Phys. Rev.
D, 70, 104016-1-24, (2004).
|
 |
75 |
Cooperstock, F.I., and Booth,
D.J., “Angular-Momentum Flux For Gravitational Radiation To
Octupole Order”, Nuovo Cimento,
62(1), 163, (1969).
|
 |
76 |
Crowley, R.J., and Thorne,
K.S., “Generation of gravitational waves. II. Post-linear formalism
revisited”, Astrophys. J.,
215, 624-635, (1977).
|
 |
77 |
Cutler, C., Apostolatos, T.A.,
Bildsten, L., Finn, L.S., Flanagan, É.É., Kennefick, D., Marković,
D.M., Ori, A., Poisson, E., Sussman, G.J., and Thorne, K.S., “The
last three minutes: Issues in gravitational wave measurements of
coalescing compact binaries”, Phys.
Rev. Lett., 70, 2984-2987, (1993).
|
 |
78 |
Cutler, C., Finn, L.S.,
Poisson, E., and Sussman, G.J., “Gravitational radiation from a
particle in circular orbit around a black hole. II. Numerical
results for the nonrotating case”, Phys. Rev. D,
47, 1511-1518, (1993).
|
 |
79 |
Cutler, C., and Flanagan,
É.É., “Gravitational waves from merging compact binaries: How
accurately can one extract the binary’s parameters from the
inspiral waveform?”, Phys. Rev.
D, 49,
2658-2697, (1994).
|
 |
80 |
Damour, T., “The two-body problem
and radiation damping in general-relativity”, C. R. Acad. Sci. Ser.
II, 294, 1355-1357, (1982).
|
 |
81 |
Damour, T.,
“Gravitational radiation and the motion of compact bodies”, in
Deruelle, N., and Piran, T., eds., Gravitational Radiation, NATO Advanced Study
Institute, Centre de physique des Houches, 2-21 June 1982, 59-144,
(North-Holland; Elsevier, Amsterdam, Netherlands; New York, U.S.A.,
1983).
|
 |
82 |
Damour, T., “Gravitational
Radiation Reaction in the Binary Pulsar and the Quadrupole-Formula
Controversy”, Phys. Rev. Lett.,
51, 1019-1021, (1983).
|
 |
83 |
Damour, T., “An
Introduction to the Theory of Gravitational Radiation”, in Carter,
B., and Hartle, J.B., eds., Gravitation in
Astrophysics: Cargèse 1986, Proceedings of a NATO Advanced Study
Institute on Gravitation in Astrophysics, held July 15-31, 1986 in
Cargése, France, vol. 156 of NATO ASI Series B, 3-62, (Plenum
Press, New York, U.S.A., 1987).
|
 |
84 |
Damour, T., “The problem of
motion in Newtonian and Einsteinian gravity”, in Hawking, S.W., and
Israel, W., eds., Three Hundred Years of
Gravitation, 128-198, (Cambridge University Press,
Cambridge, U.K.; New York, U.S.A., 1987).
|
 |
85 |
Damour, T., and Deruelle,
N., “Generalized lagrangian of two point masses in the
post-post-Newtonian approximation of general-relativity”,
C. R. Acad. Sci. Ser. II, 293, 537-540, (1981).
|
 |
86 |
Damour, T., and
Deruelle, N., “Radiation reaction and angular momentum loss in
small angle gravitational scattering”, Phys.
Lett. A, 87, 81-84, (1981).
|
 |
87 |
Damour, T., and
Esposito-Farèse, G., “Testing gravity to second post-Newtonian
order: A Field theory approach”, Phys. Rev.
D, 53, 5541-5578, (1996).
Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/9506063.
|
 |
88 |
Damour, T., Gourgoulhon,
E., and Grandclément, P., “Circular orbits of corotating binary
black holes: Comparison between analytical and numerical results”,
Phys. Rev. D, 66, 024007-1-15, (2002). Related online version
(cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0204011.
|
 |
89 |
Damour, T., and Iyer, B.R.,
“Multipole analysis for electromagnetism and linearized gravity
with irreducible Cartesian tensors”, Phys.
Rev. D, 43, 3259-3272, (1991).
|
 |
90 |
Damour, T., and Iyer, B.R.,
“Post-Newtonian generation of gravitational waves. II. The spin
moments”, Ann. Inst. Henri Poincare A,
54, 115-164, (1991).
|
 |
91 |
Damour, T., Iyer, B.R.,
Jaranowski, P., and Sathyaprakash, B.S., “Gravitational waves from
black hole binary inspiral and merger: The span of third
post-Newtonian effective-one-body templates”, Phys. Rev. D, 67,
064028, (2003). Related online version (cited on 26 April
2006):
http://arXiv.org/abs/gr-qc/0211041.
|
 |
92 |
Damour, T., Iyer, B.R., and
Sathyaprakash, B.S., “Improved filters for gravitational waves from
inspiraling compact binaries”, Phys. Rev.
D, 57, 885-907, (1998). Related
online version (cited on 18 August 1997):
http://arXiv.org/abs/gr-qc/9708034.
|
 |
93 |
Damour, T., Iyer, B.R.,
and Sathyaprakash, B.S., “Frequency-domain P-approximant filters
for time-truncated inspiral gravitational wave signals from compact
binaries”, Phys. Rev. D, 62, 084036, (2000). Related online version (cited
on 26 April 2006):
http://arXiv.org/abs/gr-qc/0001023.
|
 |
94 |
Damour, T., Jaranowski,
P., and Schäfer, G., “On the determination of the last stable orbit
for circular general relativistic binaries at the third
post-Newtonian approximation”, Phys.
Rev. D, 62, 084011-1-21, (2000). Related online version
(cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0005034.
|
 |
95 |
Damour, T.,
Jaranowski, P., and Schäfer, G., “Poincaré invariance in the ADM
Hamiltonian approach to the general relativistic two-body problem”,
Phys. Rev. D, 62, 021501-1-5, (2000). Related online version
(cited on 21 October 2000):
http://arXiv.org/abs/gr-qc/0003051. Erratum Phys. Rev. D,
63, 029903, (2001).
|
 |
96 |
Damour, T.,
Jaranowski, P., and Schäfer, G., “Dimensional regularization of the
gravitational interaction of point masses”, Phys. Lett. B, 513,
147-155, (2001). Related online version (cited on 11 May
2001):
http://arXiv.org/abs/gr-qc/0105038.
|
 |
97 |
Damour, T.,
Jaranowski, P., and Schäfer, G., “Equivalence between the
ADM-Hamiltonian and the harmonic-coordinates approaches to the
third post-Newtonian dynamics of compact binaries”, Phys. Rev. D, 63,
044021, (2001). Related online version (cited on 10 November
2000):
http://arXiv.org/abs/gr-qc/0010040. Erratum Phys. Rev. D,
66, 029901, (2002).
|
 |
98 |
Damour, T., and Schäfer, G.,
“Lagrangians for n point masses at the second post-Newtonian
approximation of general-relativity”, Gen.
Relativ. Gravit., 17, 879-905,
(1985).
|
 |
99 |
Damour, T., and Schäfer, G.,
“Higher order relativistic periastron advances in binary pulsars”,
Nuovo Cimento B, 101, 127, (1988).
|
 |
100 |
Damour, T., and Schmidt, B.,
“Reliability of perturbation theory in general relativity”,
J. Math.
Phys., 31, 2441-2458, (1990).
|
 |
101 |
Damour, T., Soffel, M.,
and Xu, C., “General-relativistic celestial mechanics. I. Method
and definition of reference systems”, Phys.
Rev. D, 43, 3273-3307, (1991).
|
 |
102 |
Damour, T., and Taylor, J.H., “On
the orbital period change of the Binary Pulsar PSR 1913+16”,
Astrophys. J., 366, 501-511, (1991).
|
 |
103 |
de Andrade, V.C.,
Blanchet, L., and Faye, G., “Third post-Newtonian dynamics of
compact binaries: Noetherian conserved quantities and equivalence
between the harmonic-coordinate and ADM-Hamiltonian formalisms”,
Class. Quantum Grav., 18, 753-778, (2001). Related online version (cited
on 19 December 2000):
http://arXiv.org/abs/gr-qc/0011063.
|
 |
104 |
Deruelle, N.,
Sur les équations du mouvement et le
rayonnement gravitationnel d’un système binaire en Relativité
Générale, Ph.D. Thesis,
(Université Pierre et Marie Curie, Paris, 1982).
|
 |
105 |
Einstein, A., “Über
Gravitationswellen”, Sitzungsber. K. Preuss.
Akad. Wiss., 1918, 154-167,
(1918).
|
 |
106 |
Einstein, A., Infeld, L., and
Hoffmann, B., “The Gravitational Equations and the Problem of
Motion”, Ann. Math., 39, 65-100, (1938).
|
 |
107 |
Epstein, R., and Wagoner,
R.V., “Post-Newtonian generation of gravitational waves”,
Astrophys. J., 197, 717-723, (1975).
|
 |
108 |
Esposito, L.W., and Harrison,
E.R., “Properties of the Hulse-Taylor binary pulsar system”,
Astrophys. J. Lett., 196, L1-L2, (1975).
|
 |
109 |
Faye, G.,
Equations du mouvement d’un
système
binaire d’objets compact à
l’approximation post-newtonienne, Ph.D. Thesis, (Université Paris
VI, Paris, France, 1999).
|
 |
110 |
Faye, G.,
Blanchet, L., and Buonanno, A., “Higher-order spin effects in the
dynamics of compact binaries I. Equations of motion”, in
preparation, (2006).
|
 |
111 |
Finn, L.S., and
Chernoff, D.F., “Observing binary inspiral in gravitational
radiation: One interferometer”, Phys. Rev.
D, 47, 2198-2219, (1993).
|
 |
112 |
Fock, V.A., “On motion of
finite masses in general relativity”, J.
Phys. (Moscow), 1(2), 81-116,
(1939).
|
 |
113 |
Fock, V.A., Theory of space, time and gravitation, (Pergamon,
London, U.K., 1959).
|
 |
114 |
Friedman, J.L., Uryū,
K., and Shibata, M., “Thermodynamics of binary black holes and
neutron stars”, Phys. Rev. D,
65, 064035-1-20, (2002).
|
 |
115 |
Futamase, T., “Strong-field
point-particle limit and the equations of motion in the binary
pulsar”, Phys. Rev. D, 36, 321-329, (1987).
|
 |
116 |
Gal’tsov, D.V.,
Matiukhin, A.A., and Petukhov, V.I., “Relativistic corrections to
the gravitational radiation of a binary system and the fine
structure of the spectrum”, Phys.
Lett. A, 77, 387-390, (1980).
|
 |
117 |
Gergely, L.Á., “Second
post-Newtonian radiative evolution of the relative orientations of
angular momenta in spinning compact binaries”, Phys. Rev. D, 62,
024007-1-6, (2000). Related online version (cited on 30 June
2006):
http://arXiv.org/abs/gr-qc/0003037.
|
 |
118 |
Gergely, L.Á., “Spin-spin
effects in radiating compact binaries”, Phys.
Rev. D, 61, 024035-1-9, (2000).
Related online version (cited on 30 June 2006):
http://arXiv.org/abs/gr-qc/9911082.
|
 |
119 |
Gergely, L.Á., Perjés,
Z., and Vasúth, M., “Spin effects in gravitational radiation back
reaction. II. Finite mass effects”, Phys.
Rev. D, 57, 3423-3432, (1998).
Related online version (cited on 30 June 2006):
http://arXiv.org/abs/gr-qc/980103.
|
 |
120 |
Geroch, R., “Multipole Moments.
II. Curved Space”, J. Math. Phys.,
11, 2580-2588, (1970).
|
 |
121 |
Geroch, R., and Horowitz, G.T.,
“Asymptotically simple does not imply asymptotically Minkowskian”,
Phys. Rev. Lett., 40, 203-206, (1978).
|
 |
122 |
Gopakumar, A., and
Iyer, B.R., “Gravitational waves from inspiraling compact binaries:
Angular momentum flux, evolution of the orbital elements and the
waveform to the second post-Newtonian order”, Phys. Rev. D, 56,
7708-7731, (1997). Related online version (cited on 15 October
1997):
http://arXiv.org/abs/gr-qc/9710075.
|
 |
123 |
Gourgoulhon, E., Grandclément,
P., and Bonazzola, S., “Binary black holes in circular orbits. I. A
global spacetime approach”, Phys. Rev.
D, 65, 044020-1-19, (2002).
Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0106015.
|
 |
124 |
Gourgoulhon, E.,
Grandclément, P., Taniguchi, K., Marck, J.-A., and Bonazzola, S.,
“Quasi-equilibrium sequences of synchronized and irrotational
binary neutron stars in general relativity”, Phys. Rev. D, 63,
064029, (2001). Related online version (cited on 26 April
2006):
http://arXiv.org/abs/gr-qc/0007028.
|
 |
125 |
Gradshteyn, I.S., and Ryzhik,
I.M., Table of Integrals, Series and
Products, (Academic Press, San Diego, U.S.A.; London, U.K.,
1980).
|
 |
126 |
Grandclément, P.,
Gourgoulhon, E., and Bonazzola, S., “Binary black holes in circular
orbits. II. Numerical methods and first results”, Phys. Rev. D, 65,
044021-1-18, (2002). Related online version (cited on 26 April
2006):
http://arXiv.org/abs/gr-qc/0106015.
|
 |
127 |
Grishchuk, L.P., and
Kopeikin, S.M., “Equations of motion for isolated bodies with
relativistic corrections including the radiation-reaction force”,
in Kovalevsky, J., and Brumberg, V.A., eds., Relativity in Celestial Mechanics and Astrometry: High
Precision Dynamical Theories and
Observational Verifications, Proceedings of the 114th
Symposium of the International Astronomical Union, held in
Leningrad, USSR, May 28-31, 1985, 19-34, (Reidel, Dordrecht,
Netherlands; Boston, U.S.A., 1986).
|
 |
128 |
Hadamard, J.,
Le problème de Cauchy et les
équations aux
dérivées partielles linéaires hyperboliques, (Hermann, Paris, France, 1932).
|
 |
129 |
Hansen, R.O., “Multipole
moments of stationary space-times”, J. Math.
Phys., 15, 46-52, (1974).
|
 |
130 |
Hunter, A.J., and Rotenberg,
M.A., “The double-series approximation method in general
relativity. I. Exact solution of the (24) approximation. II.
Discussion of ’wave tails’ in the (2s) approximation”, J. Phys. A, 2, 34-49,
(1969).
|
 |
131 |
Isaacson, R.A., and Winicour,
J., “Harmonic and Null Descriptions of Gravitational Radiation”,
Phys. Rev., 168, 1451-1456, (1968).
|
 |
132 |
Itoh, Y., “Equation of
motion for relativistic compact binaries with the strong field
point particle limit: Third post-Newtonian order”, Phys. Rev. D, 69,
064018-1-43, (2004).
|
 |
133 |
Itoh, Y., and Futamase, T.,
“New derivation of a third post-Newtonian equation of motion for
relativistic compact binaries without ambiguity”, Phys. Rev. D, 68,
121501(R), (2003).
|
 |
134 |
Itoh, Y., Futamase, T., and
Asada, H., “Equation of motion for relativistic compact binaries
with the strong field point particle limit: Formulation, the first
post-Newtonian order, and multipole terms”, Phys. Rev. D, 62,
064002-1-12, (2000). Related online version (cited on 17 May
2000):
http://arXiv.org/abs/gr-qc/9910052.
|
 |
135 |
Itoh, Y., Futamase, T., and
Asada, H., “Equation of motion for relativistic compact binaries
with the strong field point particle limit: The second and half
post-Newtonian order”, Phys.
Rev. D, 63, 064038-1-21, (2001). Related online version
(cited on 30 January 2001):
http://arXiv.org/abs/gr-qc/0101114.
|
 |
136 |
Iyer, B.R., and Will, C.M.,
“Post-Newtonian gravitational radiation reaction for two-body
systems”, Phys. Rev. Lett.,
70, 113-116, (1993).
|
 |
137 |
Iyer, B.R., and Will, C.M.,
“Post-Newtonian gravitational radiation reaction for two-body
systems: Nonspinning bodies”, Phys. Rev.
D, 52, 6882-6893, (1995).
|
 |
138 |
Jaranowski, P., and
Schäfer, G., “Radiative 3.5 post-Newtonian ADM Hamiltonian for
many-body point-mass systems”, Phys. Rev.
D, 55, 4712-4722, (1997).
|
 |
139 |
Jaranowski, P., and
Schäfer, G., “Third post-Newtonian higher order ADM Hamilton
dynamics for two-body point-mass systems”, Phys. Rev. D, 57,
7274-7291, (1998). Related online version (cited on 17 December
1997):
http://arXiv.org/abs/gr-qc/9712075. Erratum Phys. Rev. D,
63, 029902, (2001).
|
 |
140 |
Jaranowski, P., and
Schäfer, G., “The binary black-hole problem at the third
post-Newtonian approximation in the orbital motion: Static part”,
Phys. Rev. D, 60, 124003-1-7, (1999). Related online version
(cited on 23 June 1999):
http://arXiv.org/abs/gr-qc/9906092.
|
 |
141 |
Jaranowski, P., and
Schäfer, G., “The binary black-hole dynamics at the third
post-Newtonian order in the orbital motion”, Ann. Phys. (Berlin), 9, 378-383, (2000). Related online version (cited
on 14 March 2000):
http://arXiv.org/abs/gr-qc/0003054.
|
 |
142 |
Kerlick, G.D., “Finite reduced
hydrodynamic equations in the slow-motion approximation to general
relativity. Part I. First post-Newtonian equations”, Gen. Relativ. Gravit., 12, 467-482, (1980).
|
 |
143 |
Kerlick, G.D., “Finite
reduced hydrodynamic equations in the slow-motion approximation to
general relativity. Part II. Radiation reaction and higher-order
divergent terms”, Gen. Relativ.
Gravit., 12, 521-543, (1980).
|
 |
144 |
Kidder, L.E., “Coalescing
binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects”,
Phys. Rev. D, 52, 821-847, (1995). Related online version (cited
on 8 June 1995):
http://arXiv.org/abs/gr-qc/9506022.
|
 |
145 |
Kidder, L.E., Will,
C.M., and Wiseman, A.G., “Coalescing binary systems of compact
objects to (post)5/2-Newtonian
order. III. Transition from inspiral to plunge”, Phys. Rev. D, 47,
3281-3291, (1993).
|
 |
146 |
Kidder, L.E., Will, C.M.,
and Wiseman, A.G., “Spin effects in the inspiral of coalescing
compact binaries”, Phys. Rev. D,
47, R4183-R4187, (1993).
|
 |
147 |
Kochanek, C.S.,
“Coalescing Binary Neutron Stars”, Astrophys.
J., 398(1), 234-247, (1992).
|
 |
148 |
Königsdörffer, C., Faye,
G., and Schäfer, G., “Binary black-hole dynamics at the
third-and-a-half post-Newtonian order in the ADM formalism”,
Phys. Rev. D, 68, 044004-1-19, (2003). Related online version
(cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0305048.
|
 |
149 |
Kopeikin, S.M., “The
equations of motion of extended bodies in general-relativity with
conservative corrections and radiation damping taken into account”,
Astron. Zh., 62, 889-904, (1985).
|
 |
150 |
Kopeikin, S.M., “Celestial
Coordinate Reference Systems in Curved Spacetime”, Celest. Mech., 44,
87, (1988).
|
 |
151 |
Kopeikin, S.M., Schäfer, G.,
Gwinn, C.R., and Eubanks, T.M., “Astrometric and timing effects of
gravitational waves from localized sources”, Phys. Rev. D, 59,
084023-1-29, (1999). Related online version (cited on 17 February
1999):
http://arXiv.org/abs/gr-qc/9811003.
|
 |
152 |
Królak, A., Kokkotas, K.D.,
and Schäfer, G., “Estimation of the post-Newtonian parameters in
the gravitational-wave emission of a coalescing binary”,
Phys. Rev. D, 52, 2089-2111, (1995). Related online version
(cited on 7 March 1995):
http://arXiv.org/abs/gr-qc/9503013.
|
 |
153 |
Landau, L.D., and Lifshitz, E.M.,
The classical theory of fields,
(Pergamon Press, Oxford, U.K.; New York, U.S.A., 1971), 3rd
edition.
|
 |
154 |
Limousin, F.,
Gondek-RosiÅ„ska, D., and Gourgoulhon, E., “Last orbits of binary
strange quark stars”, Phys. Rev. D,
71, 064012-1-11, (2005). Related
online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0411127.
|
 |
155 |
Lincoln, C.W., and Will,
C.M., “Coalescing binary systems of compact objects to
(post)5/2-Newtonian
order: Late time evolution and gravitational radiation emission”,
Phys. Rev.
D, 42, 1123-1143, (1990).
|
 |
156 |
Lorentz, H.A., and Droste, J., in
The Collected Papers of H.A. Lorentz, Vol.
5, (Nijhoff, The Hague, Netherlands, 1937), Versl. K. Akad. Wet. Amsterdam, 26,
392 and 649, (1917).
|
 |
157 |
Madore, J.,
“Gravitational radiation from a bounded source. I”, Ann. Inst. Henri Poincare, 12, 285-305, (1970). Related online version (cited
on 02 May 2006):
http://www.numdam.org/item?id=AIHPA_1970__12_3_285_0.
|
 |
158 |
Martin, J., and Sanz, J.L., “Slow
motion approximation in predictive relativistic mechanics. II.
Non-interaction theorem for interactions derived from the classical
field-theory”, J. Math. Phys., 20, 25-34,
(1979).
|
 |
159 |
Mathews, J., “Gravitational
multipole radiation”, J. Soc. Ind. Appl.
Math., 10, 768-780, (1962).
|
 |
160 |
Mino, Y., Sasaki, M.,
Shibata, M., Tagoshi, H., and Tanaka, T., “Black Hole
Perturbation”, Prog. Theor. Phys.
Suppl., 128, 1-121, (1997).
Related online version (cited on 12 December 1997):
http://arXiv.org/abs/gr-qc/9712057.
|
 |
161 |
Mora, T., and Will, C.M., “A
post-Newtonian diagnostic of quasi-equilibrium binary
configurations of compact objects”, Phys.
Rev. D, 69, 104021, (2004).
Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0312082.
|
 |
162 |
Moritz, H., Advanced Physical Geodesy, (H. Wichmann,
Karlsruhe, Germany, 1980).
|
 |
163 |
Newhall, X.X., Standish, E.M.,
and Williams, J.G., “DE-102 - A Numerically Integrated Ephemeris of
the Moon and Planets Spanning 44 Centuries”, Astron. Astrophys., 125, 150-167, (1983).
|
 |
164 |
Nissanke, S., and Blanchet,
L., “Gravitational radiation reaction in the equations of motion of
compact binaries to 3.5 post-Newtonian order”, Class. Quantum Grav., 22, 1007, (2005). Related online version (cited on
26 April 2006):
http://arXiv.org/abs/gr-qc/0412018.
|
 |
165 |
Ohta, T., Okamura, H.,
Kimura, T., and Hiida, K., “Physically acceptable solution of
Eintein’s equation for many-body system”, Prog. Theor. Phys., 50, 492-514, (1973).
|
 |
166 |
Ohta, T., Okamura, H.,
Kimura, T., and Hiida, K., “Coordinate condition and higher-order
gravitational potential in canonical formalism”, Prog. Theor. Phys., 51, 1598-1612, (1974).
|
 |
167 |
Ohta, T., Okamura, H.,
Kimura, T., and Hiida, K., “Higher-order gravitational potential
for many-body system”, Prog. Theor.
Phys., 51, 1220-1238, (1974).
|
 |
168 |
Owen, B.J., Tagoshi, H.,
and Ohashi, A., “Nonprecessional spin-orbit effects on
gravitational waves from inspiraling compact binaries to second
post-Newtonian order”, Phys. Rev. D,
57, 6168-6175, (1998). Related online
version (cited on 31 October 1997):
http://arXiv.org/abs/gr-qc/9710134.
|
 |
169 |
Papapetrou, A.,
“Equations of motion in general relativity”, Proc. Phys. Soc. London, Sect. B, 64, 57-75, (1951).
|
 |
170 |
Papapetrou, A.,
Ann. Inst. Henri Poincare,
XIV, 79, (1962).
|
 |
171 |
Papapetrou, A.,
“Relativité - une formule pour le rayonnement gravitationnel en
première approximation”, C. R. Acad. Sci.
Ser. II, 255, 1578, (1962).
|
 |
172 |
Papapetrou, A., and
Linet, B., “Equation of motion including the reaction of
gravitational radiation”, Gen. Relativ.
Gravit., 13, 335, (1981).
|
 |
173 |
Pati, M.E., and Will, C.M.,
“Post-Newtonian gravitational radiation and equations of motion via
direct integration of the relaxed Einstein equations: Foundations”,
Phys. Rev. D, 62, 124015-1-28, (2000). Related online version
(cited on 31 July 2000):
http://arXiv.org/abs/gr-qc/0007087.
|
 |
174 |
Pati, M.E., and Will, C.M.,
“Post-Newtonian gravitational radiation and equations of motion via
direct integration of the relaxed Einstein equations. II. Two-body
equations of motion to second post-Newtonian order, and
radiation-reaction to 3.5 post-Newtonian order”, Phys. Rev. D,
65, 104008-1-21, (2001). Related
online version (cited on 31 December 2001):
http://arXiv.org/abs/gr-qc/0201001.
|
 |
175 |
Penrose, R., “Asymptotic
Properties of Fields and Space-Times”, Phys.
Rev. Lett., 10, 66-68, (1963).
|
 |
176 |
Penrose, R., “Zero rest-mass
fields including gravitation: asymptotic behaviour”, Proc. R. Soc. London, Ser.
A, 284, 159-203, (1965).
|
 |
177 |
Peters, P.C., “Gravitational
Radiation and the Motion of Two Point Masses”, Phys. Rev., 136,
B1224-B1232, (1964).
|
 |
178 |
Peters, P.C., and Mathews,
J., “Gravitational Radiation from Point Masses in a Keplerian
Orbit”, Phys. Rev., 131, 435-440, (1963).
|
 |
179 |
Petrova, N.M., “Ob
Uravnenii Dvizheniya i Tenzore Materii dlya Sistemy Konechnykh Mass
v Obshchei Teorii Otnositielnosti”, J. Exp.
Theor. Phys., 19(11), 989-999,
(1949).
|
 |
180 |
Pfeiffer, H.P.,
Teukolsky, S.A., and Cook, G.B., “Quasicircular orbits for spinning
binary black holes”, Phys. Rev. D,
62, 104018-1-11, (2000).
|
 |
181 |
Pirani, F.A.E., “Introduction
to Gravitational Radiation Theory”, in Trautman, A., Pirani,
F.A.E., and Bondi, H., eds., Lectures on
General Relativity, Vol. 1, Brandeis Summer Institute in
Theoretical Physics, 249-373, (Prentice-Hall, Englewood Cliffs,
U.S.A., 1964).
|
 |
182 |
Poisson, E., “Gravitational
radiation from a particle in circular orbit around a black hole. I.
Analytic results for the nonrotating case”, Phys. Rev. D, 47,
1497-1510, (1993).
|
 |
183 |
Poisson, E., “Gravitational
radiation from a particle in circular orbit around a black-hole.
VI. Accuracy of the post-Newtonian expansion”, Phys. Rev. D, 52,
5719-5723, (1995). Related online version (cited on 11 February
1997):
http://arXiv.org/abs/gr-qc/9505030. Addendum Phys. Rev.
D 55 (1997) 7980-7981.
|
 |
184 |
Poisson, E., and Will, C.M.,
“Gravitational waves from inspiralling compact binaries: Parameter
estimation using second-post-Newtonian waveforms”, Phys. Rev. D, 52,
848-855, (1995). Related online version (cited on 24 February
1995):
http://arXiv.org/abs/gr-qc/9502040.
|
 |
185 |
Poujade, O., and Blanchet,
L., “Post-Newtonian approximation for isolated systems calculated
by matched asymptotic expansions”, Phys. Rev.
D, 65, 124020-1-25, (2002).
Related online version (cited on 21 December 2001):
http://arXiv.org/abs/gr-qc/0112057.
|
 |
186 |
Press, W.H.,
“Gravitational Radiation from Sources Which Extend Into Their Own
Wave Zone”, Phys. Rev. D, 15, 965-968, (1977).
|
 |
187 |
Rendall, A.D.,
“Convergent and divergent perturbation series and the
post-Minkowskian scheme”, Class. Quantum
Grav., 7, 803, (1990).
|
 |
188 |
Rendall, A.D., “On the
definition of post-Newtonian approximations”, Proc. R. Soc. London, Ser.
A, 438, 341-360, (1992).
|
 |
189 |
Rendall, A.D., “The
Newtonian limit for asymptotically flat solutions of the
Vlasov-Einstein system”, Commun. Math.
Phys., 163, 89, (1994). Related
online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/9303027.
|
 |
190 |
Riesz, M., “L’intégrale de
Riemann-Liouville et le problème de Cauchy”, Acta Math., 81,
1-218, (1949).
|
 |
191 |
Sachs, R., and Bergmann,
P.G., “Structure of Particles in Linearized Gravitational Theory”,
Phys. Rev., 112, 674-680, (1958).
|
 |
192 |
Sachs, R.K., “Gravitational
waves in general relativity VI. The outgoing radiation condition”,
Proc. R. Soc. London, Ser. A,
264, 309-338, (1961).
|
 |
193 |
Sachs, R.K.,
“Gravitational waves in general relativity VIII. Waves in
asymptotically flat space-time”, Proc. R.
Soc. London, Ser. A, 270,
103-126, (1962).
|
 |
194 |
Sasaki, M.,
“Post-Newtonian Expansion of the Ingoing-Wave Regge-Wheeler
Function”, Prog. Theor. Phys., 92,
17-36, (1994).
|
 |
195 |
Schäfer, G., “The Gravitational
Quadrupole Radiation-Reaction Force and the Canonical Formalism of
ADM”, Ann. Phys. (N.Y.), 161, 81-100, (1985).
|
 |
196 |
Schäfer, G., “The ADM
Hamiltonian at the Postlinear Approximation”, Gen. Relativ. Gravit., 18, 255-270, (1986).
|
 |
197 |
Schäfer, G., and Wex, N.,
“Second post-Newtonian motion of compact binaries”, Phys. Lett. A,
174, 196-205, (1993). Erratum
Phys. Lett. A,
177, 461, (1993).
|
 |
198 |
Schwartz, L.,
“Sur l’impossibilité de la multiplication des distributions”,
C. R. Acad. Sci. Ser. II, 239, 847-848,
(1954).
|
 |
199 |
Schwartz, L.,
Théorie des
distributions, (Hermann, Paris, France, 1978).
|
 |
200 |
Sellier, A.,
“Hadamard’s finite part concept in dimension n > 2, distributional definition,
regularization forms and distributional derivatives”, Proc. R. Soc. London, Ser. A, 445, 69-98, (1994).
|
 |
201 |
Simon, W., and Beig, R., “The
multipole structure of stationary space-times”, J. Math. Phys., 24,
1163-1171, (1983).
|
 |
202 |
’t Hooft, G., and
Veltman, M.J.G., “Regularization and renormalization of gauge
fields”, Nucl. Phys. B, 44, 189-213,
(1972).
|
 |
203 |
Tagoshi, H., and
Nakamura, T., “Gravitational waves from a point particle in
circular orbit around a black hole: Logarithmic terms in the
post-Newtonian expansion”, Phys. Rev.
D, 49, 4016-4022, (1994).
|
 |
204 |
Tagoshi, H., Ohashi, A.,
and Owen, B.J., “Gravitational field and equations of motion of
spinning compact binaries to 2.5-post-Newtonian order”,
Phys. Rev. D, 63, 044006-1-14, (2001). Related online version
(cited on 4 October 2000):
http://arXiv.org/abs/gr-qc/0010014.
|
 |
205 |
Tagoshi, H., and
Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a
Particle in Circular Orbit around a Schwarzschild Black Hole”,
Prog. Theor. Phys., 92, 745-771, (1994).
|
 |
206 |
Tanaka, T., Tagoshi, H.,
and Sasaki, M., “Gravitational Waves by a Particle in Circular
Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 96, 1087-1101, (1996).
|
 |
207 |
Taylor, J.H., “Pulsar timing
and relativistic gravity”, Class. Quantum
Grav., 10, 167-174, (1993).
|
 |
208 |
Taylor, J.H., Fowler,
L.A., and McCulloch, P.M., “Measurements of general relativistic
effects in the binary pulsar PSR 1913+16”, Nature, 277, 437-440,
(1979).
|
 |
209 |
Taylor, J.H., and Weisberg,
J.M., “A New Test of General Relativity: Gravitational Radiation
and the Binary Pulsar PSR 1913+16”, Astrophys. J., 253,
908-920, (1982).
|
 |
210 |
Thorne, K.S., “Multipole
expansions of gravitational radiation”, Rev.
Mod. Phys., 52, 299-340,
(1980).
|
 |
211 |
Thorne, K.S., “The
theory of gravitational radiation: An introductory review”, in
Deruelle, N., and Piran, T., eds., Gravitational Radiation, NATO Advanced Study
Institute, Centre de physique des Houches, 2-21 June 1982, 1-57,
(North-Holland; Elsevier, Amsterdam, Netherlands; New York, U.S.A.,
1983).
|
 |
212 |
Thorne, K.S.,
“Gravitational radiation”, in Hawking, S.W., and Israel, W., eds.,
Three Hundred Years of Gravitation, 330-458, (Cambridge
University Press, Cambridge, U.K.; New York, U.S.A., 1987).
|
 |
213 |
Thorne, K.S., “Gravitational-wave
bursts with memory: The Christodoulou effect”, Phys. Rev. D,
45, 520, (1992).
|
 |
214 |
Thorne, K.S., and Hartle,
J.B., “Laws of motion and precession for black holes and other
bodies”, Phys. Rev. D, 31, 1815-1837, (1985).
|
 |
215 |
Thorne, K.S., and Kovàcs,
S.J., “Generation of gravitational waves. I. Weak-field sources”,
Astrophys. J., 200, 245-262, (1975).
|
 |
216 |
Wagoner, R.V., “Test for
Existence of Gravitational Radiation”, Astrophys. J. Lett., 196, L63-L65, (1975).
|
 |
217 |
Wagoner, R.V., and Will,
C.M., “Post-Newtonian gravitational radiation from orbiting point
masses”, Astrophys. J., 210, 764-775, (1976).
|
 |
218 |
Will, C.M., “Gravitational
Waves from Inspiralling Compact Binaries: A Post-Newtonian
Approach”, in Sasaki, M., ed., Relativistic
Cosmology, Proceedings of the 8th Nishinomiya-Yukawa
Memorial Symposium, on October 28-29, 1993, Shukugawa City Hall,
Nishinomiya, Hyogo, Japan, vol. 8 of NYMSS, 83-98, (Universal
Academy Press, Tokyo, Japan, 1994).
|
 |
219 |
Will, C.M., “Generation of
Post-Newtonian Gravitational Radiation via Direct Integration of
the Relaxed Einstein Equations”, Prog. Theor.
Phys. Suppl., 136, 158-167,
(1999). Related online version (cited on 15 October
1999):
http://arXiv.org/abs/gr-qc/9910057.
|
 |
220 |
Will, C.M., and Wiseman,
A.G., “Gravitational radiation from compact binary systems:
Gravitational waveforms and energy loss to second post-Newtonian
order”, Phys. Rev. D, 54, 4813-4848, (1996). Related online version
(cited on 5 August 1996):
http://arXiv.org/abs/gr-qc/9608012.
|
 |
221 |
Wiseman, A.G.,
“Coalescing binary-systems of compact objects to 5/2-post-Newtonian
order. IV. The gravitational-wave tail”, Phys. Rev. D, 48,
4757-4770, (1993).
|
 |
222 |
Wiseman, A.G., and Will,
C.M., “Christodoulou’s nonlinear gravitational-wave memory:
Evaluation in the quadrupole approximation”, Phys. Rev. D, 44,
R2945-R2949, (1991).
|