 |
1 |
Alvi, K., “Approximate binary-black-hole metric”, Phys. Rev. D, 61, 124013, 1–19, (2000).
Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/9912113.
|
 |
2 |
Barack, L., “Self-force on a scalar particle in spherically symmetric spacetime via mode-sum
regularization: Radial trajectories”, Phys. Rev. D, 62, 084027, 1–21, (2000). Related online
version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0005042.
|
 |
3 |
Barack, L., “Gravitational self-force by mode sum regularization”, Phys. Rev. D, 64, 084021,
1–16, (2001). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0105040.
|
 |
4 |
Barack, L., and Burko, L.M., “Radiation-reaction force on a particle plunging into a black hole”,
Phys. Rev. D, 62, 084040, 1–5, (2000). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0007033.
|
 |
5 |
Barack, L., and Lousto, C.O., “Computing the gravitational self-force on a compact object
plunging into a Schwarzschild black hole”, Phys. Rev. D, 66, 061502, 1–5, (2002). Related online
version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0205043.
|
 |
6 |
Barack, L., Mino, Y., Nakano, H., Ori, A., and Sasaki, M., “Calculating the Gravitational
Self-Force in Schwarzschild Spacetime”, Phys. Rev. Lett., 88, 091101, 1–4, (2002). Related online
version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0111001.
|
 |
7 |
Barack, L., and Ori, A., “Mode sum regularization approach for the self-force in black hole
spacetime”, Phys. Rev. D, 61, 061502, 1–5, (2000). Related online version (cited on 2 April
2004):
http://arXiv.org/abs/gr-qc/9912010.
|
 |
8 |
Barack, L., and Ori, A., “Gravitational self-force and gauge transformations”, Phys. Rev. D, 64,
124003, 1–13, (2001). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0107056.
|
 |
9 |
Barack, L., and Ori, A., “Regularization parameters for the self-force in Schwarzschild spacetime:
Scalar case”, Phys. Rev. D, 66, 084022, 1–15, (2002). Related online version (cited on 2 April
2004):
http://arXiv.org/abs/gr-qc/0204093.
|
 |
10 |
Barack, L., and Ori, A., “Gravitational Self-Force on a Particle Orbiting a Kerr Black Hole”,
Phys. Rev. Lett., 90, 111101, 1–4, (2003). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0212103.
|
 |
11 |
Barack, L., and Ori, A., “Regularization parameters for the self-force in Schwarzschild spacetime.
II. Gravitational and electromagnetic cases”, Phys. Rev. D, 67, 024029, 1–11, (2003). Related
online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0209072.
|
 |
12 |
Burko, L.M., “Self-force approach to synchrotron radiation”, Am. J. Phys., 68, 456–468, (2000).
Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/9902079.
|
 |
13 |
Burko, L.M., “Self-Force on a Particle in Orbit around a Black Hole”, Phys. Rev. Lett., 84,
4529–4532, (2000). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0003074.
|
 |
14 |
Burko, L.M., “Self-force on static charges in Schwarzschild spacetime”, Class. Quantum Grav.,
17, 227–250, (2000). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/9911042.
|
 |
15 |
Burko, L.M., Harte, A.I., and Poisson, E., “Mass loss by a scalar charge in an expanding
universe”, Phys. Rev. D, 65, 124006, 1–11, (2002). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0201020.
|
 |
16 |
Burko, L.M., and Liu, Y.T., “Self-force on a scalar charge in the spacetime of a stationary,
axisymmetric black hole”, Phys. Rev. D, 64, 024006, 1–21, (2001). Related online version (cited
on 2 April 2004):
http://arXiv.org/abs/gr-qc/0103008.
|
 |
17 |
Burko, L.M., Liu, Y.T., and Soen, Y., “Self-force on charges in the spacetime of spherical shells”,
Phys. Rev. D, 63, 024015, 1–18, (2001). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0008065.
|
 |
18 |
Chrzanowski, P.L., “Vector potential and metric perturbations of a rotating black hole”, Phys.
Rev. D, 11, 2042–2062, (1975).
|
 |
19 |
D’Eath, P.D., Black holes: Gravitational interactions, (Clarendon Press, Oxford, U.K., 1996).
|
 |
20 |
Detweiler, S., “Radiation Reaction and the Self-Force for a Point Mass in General Relativity”,
Phys. Rev. Lett., 86, 1931–1934, (2001). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0011039.
|
 |
21 |
Detweiler, S., Messaritaki, E., and Whiting, B.F., “Self-force of a scalar field for circular orbits
about a Schwarzschild black hole”, Phys. Rev. D, 67, 104016, 1–18, (2003). Related online
version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0205079.
|
 |
22 |
Detweiler, S., and Poisson, E., “Low multipole contributions to the gravitational self-force”,
Phys. Rev. D, 69, 084019, (2004). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0312010.
|
 |
23 |
Detweiler, S., and Whiting, B.F., “Self-force via a Green’s function decomposition”, Phys. Rev.
D, 67, 024025, (2003). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0202086.
|
 |
24 |
DeWitt, B.S., and Brehme, R.W., “Radiation Damping in a Gravitational Field”, Ann. Phys.
(N.Y.), 9, 220–259, (1960).
|
 |
25 |
Dirac, P.A.M., “Classical theory of radiating electrons”, Proc. R. Soc. London, Ser. A, 167,
148, (1938).
|
 |
26 |
Flanagan, É.É., and Wald, R.M., “Does back reaction enforce the averaged null energy
condition in semiclassical gravity?”, Phys. Rev. D, 54, 6233–6283, (1996). Related online version
(cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/9602052.
|
 |
27 |
Friedlander, F.G., The wave equation on a curved spacetime, (Cambridge University Press,
Cambridge, U.K., 1975).
|
 |
28 |
Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, (Yale
University Press, New Haven, U.S.A., 1923).
|
 |
29 |
Hobbs, J.M., “A Vierbein Formalism for Radiation Damping”, Ann. Phys. (N.Y.), 47, 141–165,
(1968).
|
 |
30 |
Jackson, J.D., Classical Electrodynamics, Third Edition, (Wiley, New York, U.S.A., 1999).
|
 |
31 |
Jet Propulsion Laboratory/NASA, “LISA Home Page (NASA)”, project homepage, (1999). URL
(cited on 2 April 2004):
http://lisa.jpl.nasa.gov.
|
 |
32 |
Kates, R.E., “Motion of a small body through an external field in general relativity calculated
by matched asymptotic expansions”, Phys. Rev. D, 22, 1853–1870, (1980).
|
 |
33 |
Lousto, C.O., “Pragmatic Approach to Gravitational Radiation Reaction in Binary Black Holes”,
Phys. Rev. Lett., 84, 5251–5254, (2000). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/9912017.
|
 |
34 |
Lousto, C.O., and Whiting, B.F., “Reconstruction of black hole metric perturbations from the
Weyl curvature”, Phys. Rev. D, 66, 024026, 1–7, (2002). Related online version (cited on 2 April
2004):
http://arXiv.org/abs/gr-qc/0203061.
|
 |
35 |
Manasse, F.K., “Distortion in the metric of a small center of gravitational attraction due to its
proximity to a very large mass”, J. Math. Phys., 4, 746–761, (1963).
|
 |
36 |
Manasse, F.K., and Misner, C.W., “Fermi normal coordinates and some basic concepts in
differential geometry”, J. Math. Phys., 4, 735–745, (1963).
|
 |
37 |
Mino, Y., “Perturbative approach to an orbital evolution around a supermassive black hole”,
Phys. Rev. D, 67, 084027, 1–17, (2003). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0302075.
|
 |
38 |
Mino, Y., Nakano, H., and Sasaki, M., “Covariant Self-Force Regularization of a Particle Orbiting
a Schwarzschild Black Hole – Mode Decomposition Regularization”, Prog. Theor. Phys., 108,
1039–1064, (2003). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0111074.
|
 |
39 |
Mino, Y., Sasaki, M., and Tanaka, T., “Gravitational radiation reaction to a particle motion”,
Phys. Rev. D, 55, 3457–3476, (1997). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/9606018.
|
 |
40 |
Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco,
U.S.A., 1973).
|
 |
41 |
Morette-DeWitt, C., and DeWitt, B.S., “Falling charges”, Physics (Long Island City, N.Y.), 1,
3, (1964).
|
 |
42 |
Morette-DeWitt, C., and Ging, J.L., “Freinage dû à la radiation gravitationnelle”, C. R. Hebd.
Seanc. Acad. Sci., 251, 1868, (1960).
|
 |
43 |
Nakano, H., Sago, N., and Sasaki, M., “Gauge problem in the gravitational self-force: First post
Newtonian force under Regge–Wheeler gauge”, Phys. Rev. D, 68, 124003, 1–31, (2003). Related
online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0308027.
|
 |
44 |
Ori, A., “Reconstruction of inhomogeneous metric perturbations and electromagnetic
four-potential in Kerr spacetime”, Phys. Rev. D, 67, 124010, 1–19, (2003). Related online version
(cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0207045.
|
 |
45 |
Ori, A., and Rosenthal, E., “Calculation of the self force using the extended-object approach”,
Phys. Rev. D, 68, 041701, 1–4, (2003). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0205003.
|
 |
46 |
Pfenning, M.J., and Poisson, E., “Scalar, electromagnetic, and gravitational self-forces in weakly
curved spacetimes”, Phys. Rev. D, 65, 084001, 1–30, (2002). Related online version (cited on 2
April 2004):
http://arXiv.org/abs/gr-qc/0012057.
|
 |
47 |
Poisson, E., “An introduction to the Lorentz–Dirac equation”, (December 1999). URL (cited on
2 April 2004):
http://arXiv.org/abs/gr-qc/9912045.
|
 |
48 |
Quinn, T.C., “Axiomatic approach to radiation reaction of scalar point particles in curved
spacetime”, Phys. Rev. D, 62, 064029, 1–9, (2000). Related online version (cited on 2 April
2004):
http://arXiv.org/abs/gr-qc/0005030.
|
 |
49 |
Quinn, T.C., and Wald, R.M., “An axiomatic approach to electromagnetic and gravitational
radiation reaction of particles in curved spacetime”, Phys. Rev. D, 56, 3381–3394, (1997).
Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/9610053.
|
 |
50 |
Quinn, T.C., and Wald, R.M., “Energy conservation for point particles undergoing radiation
reaction”, Phys. Rev. D, 60, 064009, 1–20, (1999). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/9903014.
|
 |
51 |
Regge, T., and Wheeler, J.A., “Stability of a Schwarzschild singularity”, Phys. Rev., 108,
1063–1069, (1957).
|
 |
52 |
Rohrlich, F., Classical charged particles, (Addison-Wesley, Redwood City, U.S.A., 1990).
|
 |
53 |
Sciama, D.W., Waylen, P.C., and Gilman, R.C., “Generally Covariant Integral Formulation of
Einstein’s Field Equations”, Phys. Rev., 187, 1762–1766, (1969).
|
 |
54 |
Smith, A.G., and Will, C.M., “Force on a static charge outside a Schwarzschild black hole”,
Phys. Rev. D, 22, 1276–1284, (1980).
|
 |
55 |
Synge, J.L., Relativity: The General Theory, (North-Holland, Amsterdam, Netherlands, 1960).
|
 |
56 |
Teitelboim, C., Villarroel, D., and van Weert, C.G., “Classical electrodynamics of retarded fields
and point particles”, Riv. Nuovo Cimento, 3, 9, (1980).
|
 |
57 |
Teukolsky, S.A., “Perturbations of a rotating black hole. I. Fundamental equations for
gravitational, electromagnetic, and neutrino-field perturbations”, Astrophys. J., 185, 635–648,
(1973).
|
 |
58 |
Thorne, K.S., and Hartle, J.B., “Laws of motion and precession for black holes and other bodies”,
Phys. Rev. D, 31, 1815–1837, (1985).
|
 |
59 |
Vishveshwara, C.V., “Stability of the Schwarzschild metric”, Phys. Rev. D, 1, 2870–2879, (1970).
|
 |
60 |
Wald, R.M., “On perturbations of a Kerr black hole”, J. Math. Phys., 14, 1453–1461, (1973).
|
 |
61 |
Wald, R.M., “Construction of Solutions of Gravitational, Electromagnetic, or Other
Perturbation Equations from Solutions of Decoupled Equations”, Phys. Rev. Lett., 41, 203–206,
(1978).
|
 |
62 |
Wiseman, A.G., “Self-force on a static scalar test charge outside a Schwarzschild black hole”,
Phys. Rev. D, 61, 084014, 1–14, (2000). Related online version (cited on 2 April 2004):
http://arXiv.org/abs/gr-qc/0001025.
|
 |
63 |
Zerilli, F.J., “Gravitational field of a particle falling in a Schwarzschild geometry analyzed in
tensor harmonics”, Phys. Rev. D, 2(10), 2141– 2160, (1970).
|
 |
64 |
Zhang, X.-H., “Multipole expansions of the general-relativistic gravitational field of the external
universe”, Phys. Rev. D, 34, 991–1004, (1986).
|