The Cosmic Anisotropy Telescope (CAT) is a three element, ground-based interferometer telescope, of
novel design [77]. Horn-reflector antennas mounted on a rotating turntable, track the sky, providing maps
at four (non-simultaneous) frequencies of 13.5, 14.5, 15.5 and 16.5 GHz. The interferometric technique
ensures high sensitivity to CMB fluctuations on scales of 0.5°, (baselines
1 m) whilst providing an
excellent level of rejection to atmospheric fluctuations. Despite being located at a relatively poor observing
site in Cambridge, the data is receiver noise limited for about 60% of the time, proving the effectiveness of
the interferometer strategy. The first observations were concentrated on a blank field (called the CAT1
field), centred on RA 08h 20m, Dec. +68° 59’, selected from the Green Bank 5 GHz surveys
under the constraints of minimal discrete source contamination and low Galactic foreground.
The data from the CAT1 field were presented in O’Sullivan et al. (1995) [65] and Scott et al.
(1996) [82].
Recently observations of a new blank field (called the CAT2 field), centred on RA 17h 00m, Dec.
+64° 30’, have been taken. Accurate information on the point source contribution to the CAT2 field maps,
which contain sources at much lower levels, has been obtained by surveying the fields with the Ryle
Telescope at Cambridge, and the multi-frequency nature of the CAT data can be used to separate the
remaining CMB and Galactic components. Some preliminary results from CAT2 have been presented in
Baker (1997) [4] and the 16.5 GHz map is shown in Figure 14
. Clear structure is visible in the central
region of this map, and is thought to be actual structure, on scales of about 1/4°, in the surface of last
scattering.
When interpreting this map, however, it should remembered that for an interferometer with just three horns, the ‘synthesised’ beam of the telescope has large sidelobes, and it is these sidelobes that cause the regular features seen in the map. In the full analysis of the data, these sidelobes must be carefully taken into account.
For an interferometer, ‘visibility space’ correlates directly with the space of spherical harmonic
coefficients
discussed earlier, and the data may be used to place constraints directly on the CMB power
spectrum in two independent bins in
. These constraints, along with those from the other experiments,
are shown in Figure 15
.
| http://www.livingreviews.org/lrr-1998-11 |
© Max Planck Society and the author(s)
Problems/comments to |