\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf A Note on the Postage Stamp Problem } \vskip 1cm \large Amitabha Tripathi \\ Department of Mathematics \\ Indian Institute of Technology \\ Hauz Khas \\ New Delhi - 110016 \\ India \\ \href{mailto:atripath@maths.iitd.ac.in}{\tt atripath@maths.iitd.ac.in} \\ \end{center} \vskip .2 in \begin{abstract} Let $h,k$ be fixed positive integers, and let $A$ be any set of positive integers. Let $hA:=\{a_1+a_2+\cdots+a_r:a_i \in A, r \le h\}$ denote the set of all integers representable as a sum of no more than $h$ elements of $A$, and let $n(h,A)$ denote the largest integer $n$ such that $\{1,2,\ldots,n\} \subseteq hA$. Let $n(h,k)=\max_A\:n(h,A)$, where the maximum is taken over all sets $A$ with $k$ elements. The purpose of this note is to determine $n(h,A)$ when the elements of $A$ are in arithmetic progression. In particular, we determine the value of $n(h,2)$. \end{abstract} \newtheorem{thm}{Theorem} \newtheorem{corollary}[thm]{Corollary} %\usepackage{amsmath} %\usepackage{amssymb} %\usepackage{amsthm} %\usepackage{amsfonts} %\usepackage{latexsym} %\usepackage{amscd} %\usepackage{mathrsfs} %\usepackage[mathcal]{euscript} % %\setlength{\oddsidemargin}{0.0in} %\setlength{\evensidemargin}{0.0in} %\setlength{\topmargin}{0.0in} %\setlength{\textheight}{9in} %\setlength{\textwidth}{6.3in} \newenvironment{pf}{\noindent{\bf Proof. }}{\hfill $\Box$ \\} \def\lf{\lfloor} \def\rf{\rfloor} \def\l{\lambda} \def\N{\mathbb N} \section{Introduction} A set $A=\{a_10$, and all other $x_i$ zero. We are now in a position to state our main result. \\ \begin{thm} Let $h,k,d$ be positive integers. Then \[ n(h,\{1,1+d,1+2d,\ldots,1+(k-1)d\}) = \left\{ \begin{array}{ll} h, & \mbox{if $h \le d-1$}; \\ h+(k-1)(h+1-d)d, & \mbox{if $h \ge d$}. \end{array} \right. \] \end{thm} \begin{pf} We write $A=\{1,1+d,1+2d,\ldots,1+(k-1)d\}$. The case $h \le d-1$ is easy to see. Henceforth, we assume $h \ge d$. Suppose $x_0,x_1,\ldots,x_{k-1}$ are chosen such that the sum in (1) equals $n=n(h,A)$. If $\sum_{i=0}^{k-1}\,x_i