\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf Evaluations of Some Variant Euler Sums } \vskip 1cm \large Hongwei Chen\\ Department of Mathematics\\ Christopher Newport University\\ Newport News, VA 23606\\ \href{mailto:hchen@cnu.edu}{hchen@cnu.edu} \\ \end{center} \vskip .2 in \begin{abstract} In this note we present some elementary methods for the summation of certain Euler sums with terms involving $1 + 1/3 + 1/5 + \cdots + 1/(2k-1).$ \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{lemma}{Lemma}[section] \section{Introduction} In the last decade, based on extensive experimentation with computer algebraic systems, a large class of Euler sums have been explicitly evaluated in terms of the Riemann zeta function $\zeta(k)$. For example, let $$H_{k} = 1 + \frac{1}{2} + \cdots + \frac{1}{k}.$$ Then \begin{eqnarray*} \sum_{k=1}^{\infty}\,\frac{1}{k^{2}}\,H_{k} & = & 2\,\zeta(3),\\ \sum_{k=1}^{\infty}\,\frac{1}{2^{k}\,k^{2}}\,H_{k} & = & \zeta(3) - \frac{\pi^{2}}{12}\,\ln 2,\\ \sum_{k=1}^{\infty}\,\frac{1}{k^{2}}\,H_{k}^{2} & = & \frac{17}{4}\,\zeta(4), \end{eqnarray*} and $$ \sum_{k=1}^{\infty}\,\frac{(-1)^{k-1}}{k^{2}}\,H_{k} = \frac{5}{8}\,\zeta(3).$$ More details can be found in \cite{Bailey,Borwein1, Borwein2, Borwein3} In particular, Borwein and Bradley \cite{Borwein2} collected 32 beautiful proofs of the first sum above. Motivated by the above results, in this note, replacing $H_{k}$ by $$h_{k} = H_{2k} - \frac{1}{2}\,H_{k} = 1 + \frac{1}{3} + \cdots + \frac{1}{2k - 1} ,\eqno(1)$$ we study the following variant Euler sums $$\sum_{k=1}^{\infty}\,a_{k}\,h_{k}$$ where the $a_{k}$ are relatively simple function of $k$.\\ \section{The Main Results} We begin to derive some series involving $h_{k}$. Since $$-\,\ln(1 - x) = \int_{0}^{x}\,\frac{dt}{1 - t} = \sum_{k=1}^{\infty}\,\frac{x^{k}}{k},$$ replacing $x$ by $-x$ gives $$\ln(1 + x) = \sum_{k=1}^{\infty}\,\frac{(-1)^{k-1}x^{k}}{k}.$$ Averaging these two series gives us $$\frac{1}{2}\,\ln\left(\frac{1+ x}{1 - x}\right) = \sum_{k=1}^{\infty}\,\frac{1}{2k-1}\,x^{2k - 1}.\eqno(2)$$ In term of the Cauchy product and partial fractions, we have \begin{eqnarray*} \frac{1}{4}\,\ln^{2}\left(\frac{1+ x}{1 - x}\right) & = & \sum_{k=1}^{\infty}\,\left(\frac{1}{(2k-1)\cdot 1} + \frac{1}{(2k-3)\cdot 3} + \cdots + \frac{1}{1\cdot(2k-1)}\right)x^{2k}\\ & = & \sum_{k=1}^{\infty}\,\frac{1}{2k}\,\left[\left(\frac{1}{2k-1} + \frac{1}{1}\right) + \left( \frac{1}{2k-3} + \frac{1}{3}\right) + \cdots + \left(\frac{1}{1} + \frac{1}{2k-1}\right)\right]x^{2k}\\ & = & \sum_{k=1}^{\infty}\,\left(1 + \frac{1}{3} + \cdots + \frac{1}{2k -1}\right)\frac{x^{2k}}{k}. \end{eqnarray*} Noting that $h_{k}$ is given by (1), we have $$ \sum_{k=1}^{\infty}\,\frac{h_{k}}{k}\,x^{2k} = \frac{1}{4}\,\ln^{2}\left(\frac{1+ x}{1 - x}\right). \eqno(3)$$ This enables us to evaluate a wide variety of interesting series via specialization, differentiation and integration.\\ First, setting $x = 1/2$, we find $$\sum_{k=1}^{\infty}\,\frac{h_{k}}{2^{2k}\,k} = \frac{1}{4}\,\ln^{2}3.\eqno(4)$$ For $x = \sqrt{2}/2$, $$\sum_{k=1}^{\infty}\,\frac{h_{k}}{2^{k}\,k} = \frac{1}{4}\,\ln^{2}(3 + 2\sqrt{2}).\eqno(5)$$ Putting $x = (\sqrt{5} - 1)/2 = \phi$, the golden ratio, we get $$\sum_{k=1}^{\infty}\,\frac{h_{k}}{k}\,\phi^{2k} = \frac{1}{4}\,\ln^{2}(2 + \sqrt{5}).\eqno(6)$$ Furthermore, for any $\alpha \geq 2$, putting $x = (\sqrt{5} + 1)/2\alpha$ and $x = (\sqrt{5} - 1)/2\alpha$ in (3) respectively, we get $$\sum_{k=1}^{\infty}\,\frac{h_{k}}{\alpha^{2k}\,k}\,\left(\frac{\sqrt{5} + 1}{2}\right)^{2k} = \frac{1}{4}\,\ln^{2}\left(\frac{(2\alpha +1) + \sqrt{5}}{(2\alpha -1) - \sqrt{5}}\right)\eqno(7)$$ and $$\sum_{k=1}^{\infty}\,\frac{h_{k}}{\alpha^{2k}\,k}\,\left(\frac{\sqrt{5} - 1}{2}\right)^{2k} = \frac{1}{4}\,\ln^{2}\left(\frac{(2\alpha -1) + \sqrt{5}}{(2\alpha +1) - \sqrt{5}}\right).\eqno(8)$$ Recalling the Fibonacci numbers which are defined by $$F_{1} = 1, F_{2} = 1, F_{k} = F_{k-1} + F_{k-2}\,\,\,\mbox{for $k \geq 2$}$$ and Binet's formula $$F_{k} = \frac{1}{\sqrt{5}}\,\left(\left(\frac{\sqrt{5} + 1}{2}\right)^{k} - \left(\frac{1- \sqrt{5} }{2}\right)^{k}\right),$$ combining (7) and (8), we find $$\sum_{k=1}^{\infty}\,\frac{h_{k}}{\alpha^{2k}\,k}\,F_{2k} = \frac{\sqrt{5}}{20}\,\ln\left(\frac{\alpha^2 + \alpha -1}{\alpha^{2} - \alpha -1}\right)\,\ln\left(\frac{\alpha^2 + \alpha\sqrt{5} +1}{\alpha^{2} - \alpha\sqrt{5} +1}\right).\eqno(9)$$ In particular, for $\alpha = 2$ $$\sum_{k=1}^{\infty}\,\frac{h_{k}}{2^{2k}\,k}\,F_{2k} = \frac{\sqrt{5}}{4}\,\ln 5\,\ln (9 + 4\sqrt{5}).\eqno(10)$$ Another step along this path is to change variables. Setting $x= \cos\theta$ in (3) leads to $$ \sum_{k=1}^{\infty}\,\frac{h_{k}}{k}\,\cos^{2k}\theta = \ln^{2}\left(\cot(x/2)\right).\eqno(11)$$ Integrating both sides from $0$ to $\pi$, and using $$\int_{0}^{\pi}\,\cos^{2k}\theta\,d\theta = \frac{\pi}{2^{2k}}\,\left(\begin{array}{c} 2k \\k \end{array}\right)$$ and $$\int_{0}^{\pi}\,\ln^{2}\left(\cot(x/2)\right)\,d\theta = \frac{\pi^{3}}{4},$$ we find $$ \sum_{k=1}^{\infty}\,\frac{h_{k}}{2^{2k}\,k}\,\left(\begin{array}{c} 2k \\k \end{array}\right) = \frac{\pi^{2}}{4}.\eqno(12)$$ This adds another interesting series to Lehmer's list \cite{Lehmer}.\\ Next, for $0 < x < 1$, differentiating (3), then multiplying both sides by $x$, we obtain $$\sum_{k=1}^{\infty}\,h_{k}x^{2k} = \frac{x}{2(1-x^{2})}\,\ln\left(\frac{1+ x}{1 - x}\right).\eqno(13)$$ Setting $x = 1/2$, we get $$\sum_{k=1}^{\infty}\,\frac{h_{k}}{2^{2k}} = \frac{1}{3}\,\ln3.\eqno(14)$$ For $x = \sqrt{2}/2$, $$\sum_{k=1}^{\infty}\,\frac{h_{k}}{2^{k}} = \frac{\sqrt{2}}{2}\, \ln (3 + 2\sqrt{2}).\eqno(15)$$ Similar to (10), we have $$\sum_{k=1}^{\infty}\,\frac{h_{k}}{2^{2k}}\,F_{2k} = \frac{\sqrt{5}}{50}\, (10\ln(5 + 2\sqrt{5}) + 3 \sqrt{5}\ln 5 - 5 \ln5).\eqno(16)$$ Finally, for $ 0 < x \leq 1$, dividing both sides of (3) by $x$ and integrating from $0$ to $x$, we obtain $$ \sum_{k=1}^{\infty}\,\frac{h_{k}}{k^{2}}\,x^{2k} = \frac{1}{2}\,\int_{0}^{x}\, \frac{1}{t}\ln^{2}\left(\frac{1+ t}{1 - t}\right)\,dt.\eqno(17)$$ Using the substitution $u = (1-x)/(1 + x)$ and integration by parts, we get \begin{eqnarray*} \sum_{k=1}^{\infty}\,\frac{h_{k}}{k^{2}}\,x^{2k} & = & \int_{(1-x)/(1 + x)}^{1}\,\frac{\ln^{2}u}{1 - u^{2}}\,du\\ & = & \frac{1}{2}\,\ln x\ln^{2}\left(\frac{1-x}{1 + x}\right) + \int_{(1-x)/(1 + x)}^{1}\,\frac{\ln u}{u}\,\ln\left(\frac{1-u}{1 + u}\right)du. \end{eqnarray*} In view of (2), we have \begin{eqnarray*} \int_{(1-x)/(1 + x)}^{1}\,\frac{\ln u}{u}\,\ln\left(\frac{1-u}{1 + u}\right)du & = & -2\,\sum_{k=0}^{\infty}\,\frac{1}{2k + 1}\,\int_{(1-x)/(1 + x)}^{1}\,u^{2k}\ln u\,du. \end{eqnarray*} Since $$\int\,u^{2k}\ln u\,du = \frac{1}{2k +1}\,u^{2k+1}\ln u - \frac{1}{(2k+1)^{2}}\,u^{2k+1} + C,$$ we find $$\sum_{k=1}^{\infty}\,\frac{h_{k}}{k^{2}}\,x^{2k} = \frac{1}{2}\,\ln x\ln^{2}\left(\frac{1-x}{1 + x}\right)+ 2\ln\left(\frac{1-x}{1 + x}\right)\, \sum_{k=0}^{\infty}\,\frac{1}{(2k+1)^{2}}\,\left(\frac{1-x}{1 + x}\right)^{2k+1}$$ $$+ 2\,\sum_{k=0}^{\infty}\,\frac{1}{(2k+1)^{3}} - 2\,\sum_{k=0}^{\infty}\,\frac{1}{(2k+1)^{3}}\,\left(\frac{1-x}{1 + x}\right)^{2k+1}.\eqno(18)$$ In terms of the polylogarithm function \cite{Lewin} $$Li_{n}(x) = \sum_{k=1}^{\infty}\,\frac{x^{n}}{k^{n}},$$ and noting that $$\sum_{k=0}^{\infty}\,\frac{x^{n}}{(2k+1)^{n}} = \frac{1}{2}\,(Li_{n}(x) - Li_{n}(-x))$$ and $$\sum_{k=0}^{\infty}\,\frac{1}{(2k + 1)^{3}} = \sum_{k=0}^{\infty}\,\frac{1}{k^{3}} - \sum_{k=0}^{\infty}\,\frac{1}{(2k)^{3}} = \frac{7}{8}\,\zeta(3),$$ we finally obtain $$\sum_{k=1}^{\infty}\,\frac{h_{k}}{k^{2}}\,x^{2k} = \frac{7}{4}\,\zeta(3) + \frac{1}{2}\,\ln x\ln^{2}\left(\frac{1-x}{1 + x}\right)$$ $$+ \ln\left(\frac{1-x}{1 + x}\right)\,\left(Li_{2}\left(\frac{1-x}{1 + x}\right) - Li_{2}\left(\frac{x-1}{1 + x}\right)\right) - \left(Li_{3}\left(\frac{1-x}{1 + x}\right) - Li_{3}\left(\frac{x-1}{1 + x}\right)\right). $$ Setting $x = 1$, we get $$ \sum_{k=1}^{\infty}\,\frac{h_{k}}{k^{2}} = \frac{7}{4}\,\zeta(3).\eqno(19)$$ For $x = 1/3$, \begin{eqnarray*} \sum_{k=1}^{\infty}\,\frac{h_{k}}{3^{2k}\,k^{2}} & = & \frac{7}{8}\,\zeta(3) - \frac{1}{2}\,\ln 3\ln^{3}2\\ & + &\frac{1}{3}\,\ln^{3}2 + \ln 2\,Li_{2}(-1/2) + Li_{3}(-1/2), \end{eqnarray*} where we have used \begin{eqnarray*} Li_{2}(1/2) & = & \frac{\pi^{2}}{12} - \frac{1}{2}\,\ln^{2}2;\\ Li_{3}(1/2) & = & \frac{7}{8}\,\zeta(3) + \frac{1}{6}\,\ln^{3}2 - \frac{\pi^{2}}{12}\,\ln 2 . \end{eqnarray*} Moreover, noting that $$h_{k} = \sum_{i=1}^{k}\,\int_{0}^{1}\, x^{2(i-1)}\,dt = \int_{0}^{1}\, (\sum_{i=1}^{k}\,x^{2(i-1)})\,dt = \int_{0}^{1}\,\frac{1 - x^{2k}}{1 - x^{2}}\,dx$$ and rewriting (8) as $$ \sum_{k=1}^{\infty}\,\frac{h_{k}}{k^{2}}\,(1-x^{2k}) = \frac{1}{2}\,\int_{x}^{1}\, \frac{1}{t}\ln^{2}\left(\frac{1+ t}{1 - t}\right)\,dt, $$ we have \begin{eqnarray*} \sum_{k=1}^{\infty}\,\frac{h_{k}^{2}}{k^{2}} & = & \sum_{k=1}^{\infty}\,\frac{h_{k}}{k^{2}}\,\int_{0}^{1}\,\frac{1 - x^{2k}}{1 - x^{2}}\,dx\\ & = & \frac{1}{2}\,\int_{0}^{1}\,\left(\frac{1}{1 - x^{2}}\,\int_{x}^{1}\, \frac{1}{t}\ln^{2}\left(\frac{1+ t}{1 - t}\right)\,dt\right)\,dx. \end{eqnarray*} Exchanging the order of the integration, we get \begin{eqnarray*} \sum_{k=1}^{\infty}\,\frac{h_{k}^{2}}{k^{2}} & = & \frac{1}{2}\,\int_{0}^{1}\,\left(\frac{1}{t}\ln^{2}\left(\frac{1+ t}{1 - t}\right)\,\int_{0}^{t}\,\frac{1}{1 - x^{2}}\,dx\right)\,dt.\\ & = & \frac{1}{4}\,\int_{0}^{1}\,\frac{1}{t}\ln^{3}\left(\frac{1+ t}{1 - t}\right)\,dt. \end{eqnarray*} Using the substitution $x = (1-t)/(1 + t)$ and the well-known fact that $$\int_{0}^{1}\,x^{k}\,\ln^{3}x\,dx = -\,\frac{6}{(k + 1)^{3}},$$ we find $$ \sum_{k=1}^{\infty}\,\frac{h_{k}^{2}}{k^{2}} = - \frac{1}{2}\,\int_{0}^{1}\,\frac{\ln^{3}x}{1 - x^{2}}\,dx$$ $$ = - \frac{1}{2}\,\sum_{k=0}^{\infty}\,\int_{0}^{1}\,x^{2k}\ln^{3}x\,dx\\ = 3\,\sum_{k=0}^{\infty}\,\frac{1}{(2k+1)^{4}} = \frac{45}{16}\,\zeta(4)\eqno(20)$$ Another path out of (3) is to bring in complex variables. Since $$ \frac{1}{i}\tan^{-1}(iz) = \tanh^{-1} z = \frac{1}{2} \ln \left(\frac{1+z}{1 - z}\right)$$ Replacing $x$ by $ix$ in (3), we obtain $$ \sum_{k=1}^{\infty}\,\frac{(-1)^{k-1}h_{k}}{k}\,x^{2k} = (\tan^{-1}x)^{2}. \eqno(21)$$ This series may be evaluated at values such as $x = 2- \sqrt{3}, \sqrt{3}/3, 1$ explicitly: $$\sum_{k=1}^{\infty}\,\frac{(-1)^{k-1}h_{k}(2 - \sqrt{3})^{2k}}{k} = \frac{\pi^{2}}{144} = \frac{3}{72}\,\zeta(2),\eqno(22)$$ $$\sum_{k=1}^{\infty}\,\frac{(-1)^{k-1}h_{k}}{3^{k}\,k} = \frac{\pi^{2}}{36} = \frac{1}{6}\,\zeta(2),\eqno(23)$$ $$\sum_{k=1}^{\infty}\,\frac{(-1)^{k-1}h_{k}}{k} = \frac{\pi^{2}}{16} = \frac{3}{8}\,\zeta(2).\eqno(24)$$ Similarly, applying differentiation and integration to (21), we deduce the corresponding formulas $$\sum_{k=1}^{\infty}\,(-1)^{k-1}h_{k}\,x^{2k} = \frac{x}{1 + x^{2}}\,\tan^{-1}x,\eqno(25)$$ $$\sum_{k=1}^{\infty}\,\frac{(-1)^{k-1}h_{k}}{k^{2}}\,x^{2k} = 2\,\int_{0}^{x}\,\frac{(\tan^{-1}t)^{2}}{t}\,dt.\eqno(26)$$ In particular, we find $$ \sum_{k=1}^{\infty}\,\frac{(-1)^{k-1}h_{k}}{3^{k}} = \frac{\sqrt{3}}{24}\,\pi,\eqno(27)$$ $$\sum_{k=1}^{\infty}\,\frac{(-1)^{k-1}h_{k}}{k^{2}} = G\,\pi - \frac{7}{4}\,\zeta(3),\eqno(28)$$ where $G$ is the Catalan's constant which is defined by $$ G = \sum_{k=0}^{\infty}\,\frac{(-1)^{k}}{(2k + 1)^{2}}.$$ \vspace{0.1in} Finally, following the excellent suggestion of an anonymous referee, recalling that $$h_{k} = H_{2k} - \frac{1}{2}\,H_{k},\eqno(29)$$ we find from (19) $$\sum_{k=1}^{\infty}\,\frac{1}{k^{2}}\,H_{2k} = \sum_{k=1}^{\infty}\,\frac{1}{k^{2}}\,h_{k} + \frac{1}{2}\,\sum_{k=1}^{\infty}\,\frac{1}{k^{2}}\,H_{k} = \frac{11}{4}\,\zeta(3).\eqno(30)$$ Furthermore, in terms of the multiple series \cite{Zagier} $$\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\,\frac{1}{ij(i + j)} = 2\zeta(3),\,\,\,\,\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\,\frac{(-1)^{i + j}}{ij(i + j)} = \frac{1}{4}\,\zeta(3),$$ the difference gives $$\sum_{i, j> 1, i + j = \mbox{odd}}\,\frac{1}{ij(i + j)} = \frac{7}{8}\,\zeta(3).$$ Setting $i + j = 2k + 1$ and using partail fractions, we have \begin{eqnarray*} \sum_{i, j> 1, i + j = \mbox{odd}}\,\frac{1}{ij(i + j)} & = & \sum_{k=1}^{\infty}\,\sum_{j=1}^{2k}\,\frac{1}{j(2k+1-j)(2k + 1)}\\ & = & \sum_{k=1}^{\infty}\,\frac{1}{(2k+ 1)^{2}}\sum_{j=1}^{2k}\,\left(\frac{1}{j} + \frac{1}{2k+1-j}\right)\\ & = & \sum_{k=1}^{\infty}\,\frac{1}{(2k+ 1)^{2}}\,2H_{2k}. \end{eqnarray*} Thus, $$\sum_{k=1}^{\infty}\,\frac{1}{(2k+ 1)^{2}}\,H_{2k} = \frac{7}{16}\,\zeta(3).\eqno(31)$$ Subsequently, we have $$\sum_{k=1}^{\infty}\,\frac{1}{(2k-1)^{2}}\,H_{2k} = \sum_{k=1}^{\infty}\,\frac{1}{(2k+ 1)^{2}}\,H_{2k} + $$ $$\sum_{k=1}^{\infty}\,\frac{1}{(2k- 1)^{3}} + \sum_{k=1}^{\infty}\,\frac{1}{2k(2k- 1)^{2}} = \frac{21}{16}\,\zeta(3) + \frac{1}{8}\,(\pi^{2} - 8\ln 2).\eqno(32)$$ From this and the known result \cite{Bailey} $$\sum_{k=1}^{\infty}\,\frac{1}{(2k- 1)^{2}}\,H_{k} = \frac{1}{4}\,(\pi^{2} - \pi^{2}\ln 2 - 8\ln 2 + 7\zeta(3)),$$ we finally get $$\sum_{k=1}^{\infty}\,\frac{1}{(2k- 1)^{2}}\,h_{k} = \frac{7}{16}\,\zeta(3) + \frac{3}{4}\,\zeta(2)\ln 2. \eqno(33)$$ \section{Acknowledgments} The author would like to thank the referee and the editor for their thoughtful comments and suggestions for improving the original version of the manuscript. \begin{thebibliography}{9} \bibliographystyle{plain} \bibitem{Bailey} D.\ Bailey, J.\ Borwein and R.\ Girgensohn, Experimental evaluation of Euler sums, {\it Experimental Math.}, {\bf 3} (1994), 17--30. \bibitem{Borwein1} J.\ Borwein, D.\ Bailey and R.\ Girgensohn, {\it Experimentation in Mathematics}, A. K. Peters, 2004. \bibitem{Borwein2} J.\ Borwein and D.\ V. Bradley, Thirty-two Goldbach variations, preprint. Available at \href{http://users.cs.dal.ca/~jborwein/32goldbach.pdf}{\tt http://users.cs.dal.ca/\symbol{126}jborwein/32goldbach.pdf}. \bibitem{Borwein3} J.\ Borwein and I.\ J. Zucker and J.\ Boersma, The evaluation of character Euler double sums, preprint. Available at \href{http://users.cs.dal.ca/~jborwein/bzb7.pdf}{\tt http://users.cs.dal.ca/\symbol{126}jborwein/bzb7.pdf}. \bibitem{Lewin} L.\ Lewin, {\it Polylogarithms and Associated Functions}, Elsevier North Holland, New York-Amsterdam, 1981. \bibitem{Lehmer} D.\ H.\ Lehmer, Interesting series involving the central binomial coefficient, {\it Amer.\ Math.\ Monthly}, {\bf 92} (1985), 449--457. \bibitem{Zagier} D.\ Zagier, Values of zeta functions and their applications, {\it First European Congress of Mathematics}, Vol.\ 2, Paris, Birkhauser, 1994, pp.\ 497--512. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2000 {\it Mathematics Subject Classification}: Primary 40C15; Secondary 40A25, 11M41, 11M06. \noindent \emph{Keywords: } Euler sums, Riemann zeta function, closed forms. \bigskip \hrule \bigskip \noindent (Concerned with sequences \seqnum{A000045}, \seqnum{A000984}, \seqnum{A001008}, and \seqnum{A005408}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received February 9 2006; revised version received April 21 2006. Published in {\it Journal of Integer Sequences}, May 18 2006. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .