%&latex %will accept 10pt 11pt or 12 pt in following line %\renewcommand{\baselinestretch}{1.3} sets the interline spacing at %generous double-spacing \documentclass[12pt,reqno]{article} %\usepackage[usenames]{color} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} %\definecolor{webgreen}{rgb}{0,.5,0} %\definecolor{webbrown}{rgb}{.6,0,0} %\usepackage{color} %\usepackage{fullpage} %\usepackage{float} %\usepackage{psfig} %\usepackage{graphics,amsmath,amssymb} %\usepackage{amsfonts} %\usepackage{latexsym} \usepackage{epsf} \usepackage{amsmath,amsthm} \usepackage{latexsym} \usepackage{pstricks,pstcol,pst-node} \usepackage{color} \usepackage{xspace} % load hyperref last %\usepackage[colorlinks=true, %linkcolor=green, %filecolor=brown, %citecolor=green]{hyperref} \def\red{\textcolor{red} } \def\v{\vert} \def\lr{LRmax\xspace} \def\a{\ensuremath{\mathcal A}\xspace} \def\b{\ensuremath{\mathcal B}\xspace} \def\c{\ensuremath{\mathcal C}\xspace} \def\s{\ensuremath{\mathcal S}\xspace} \def\si{\ensuremath{\sigma}} \def\ok{$3\underline{5}241$OK\xspace} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf A Combinatorial Interpretation of the \vskip .1in Eigensequence for Composition} \vskip 1cm \large David Callan \\ Department of Statistics\\ University of Wisconsin-Madison\\ 1300 University Ave.\\ Madison, WI 53706-1532\\ USA\\ \href{mailto:callan@stat.wisc.edu}{\tt callan@stat.wisc.edu} \\ \end{center} \vskip .2 in \begin{abstract} The monic sequence that shifts left under convolution with itself is the Catalan numbers with 130+ combinatorial interpretations. Here we establish a combinatorial interpretation for the monic sequence that shifts left under \emph{composition}: it counts permutations that contain a 3241 pattern only as part of a 35241 pattern. We give two recurrences, the first allowing relatively fast computation, the second similar to one for the Catalan numbers. Among the $4\times 4!=96$ similarly restricted patterns involving 4 letters (such as $4\underline{2}31$: a 431 pattern occurs only as part of a 4231), four different counting sequences arise: 64 give the Catalan numbers, 16 give the Bell numbers, 12 give sequence \htmladdnormallink{A051295}{http://www.research.att.com:80/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A051295} in OEIS, and 4 give a new sequence with an explicit formula. \end{abstract} \newtheorem{theorem}{Theorem}%[section] \newtheorem{proposition}{Proposition}%[section] \newtheorem{corollary}{Corollary}%[section] \newtheorem{lemma}{Lemma}%[section] %path-generating code courtesy of Christian Krattenthaler %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Input-Datei zum Erzeugen von Gitterpunktwegen.% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %LaTeX-Version% %%%%%%%%%%%%%%% %entering a path: % \Pfad(x-coordinate of starting point,y-coordinate of final %point),path % as 1-2-3-4-word\endPfad %(1=step in x-direction, 2=step in y-direction, 3=upward diagonal step, 4=downward diagonal step) % %entering a dotted path: % \SPfad(x-coordinate of starting point,y-coordinate of starting point),path % as 1-2-3-4-word\endSPfad %(1=step in x-direction (E), 2=step in y-direction (N), 3=upward diagonal step, 4=downward diagonal step) %(5=step EEN, 6=step EES, 7=step EEEN, 8=step EEES) %coordinate-axes: % \Koordinatenachsen(length of positive x-axes, length of positive %y-axes)(length of negative x-axes, length of negative y-axes) %The length of negative axes are entered as negative numbers. % %lattice: % \Gitter(number of points in positive x-direction, number of points %in positive y-direction)(number of points in negative x-direction, %number of points in negative y-direction) % %diagonal lines: % \Diagonale(x-coordinate of SW-most point,y-coordinate of SW-most point)length of the projection on the x-axes % %antidiagonal lines: % \AntiDiagonale(x-coordinate of NW-most point,y-coordinate of NW-most point)length of the projection on the x-axes % %labelling of points: % \Label[location?]{[label]}(x-coordinate,y-coordinate) %where: % [location?]=\l,\lo,\lu,\r,\ro,\ru,\o,\u %and l=left, r=right, u=bottom, o=top. %In addition, if by \Einheit?cm the basic unit is changed, there exist %\llo,\loo,\llu,\luu,\rro,\roo,\rru,\ruu. % %The basic unit can be changed by entering % \Einheit=?cm %The default is \Einheit=0.5cm. % %The thickness of the paths can be changed by entering % \PfadDicke{?cm} %The default is \PfadDicke=1pt. % %The following point sizes are available: %\DuennPunkt, \NormalPunkt, \DickPunkt. Syntax: % \DickPunkt(x-coordinate,y-coordinate), etc. % %Besides, a circle is available by \Kreis. Syntax: % \Kreis(x-coordinate,y-coordinate) % \catcode`\@=11 \font\tenln = line10 \font\tenlnw = linew10 \thicklines \newskip\Einheit \Einheit=.6cm \newcount\xcoord \newcount\ycoord \newdimen\xdim \newdimen\ydim \newdimen\PfadD@cke \newdimen\Pfadd@cke \PfadD@cke2pt \Pfadd@cke0.3pt \def\PfadDicke#1{\PfadD@cke#1 \divide\PfadD@cke by2 \Pfadd@cke\PfadD@cke \multiply\PfadD@cke by2} \long\def\LOOP#1\REPEAT{\def\BODY{#1}\ITERATE} \def\ITERATE{\BODY \let\next\ITERATE \else\let\next\relax\fi \next} \let\REPEAT=\fi \def\Punkt{\hbox{\raise-2pt\hbox to0pt{\hss\scriptsize$\bullet$\hss}}} \def\DuennPunkt(#1,#2){\unskip \raise#2 \Einheit\hbox to0pt{\hskip#1 \Einheit \raise-1.5pt\hbox to0pt{\hss\tiny$\bullet$\hss}\hss}} \def\NormalPunkt(#1,#2){\unskip \raise#2 \Einheit\hbox to0pt{\hskip#1 \Einheit \raise-3pt\hbox to0pt{\hss\large$\bullet$\hss}\hss}} \def\DickPunkt(#1,#2){\unskip \raise#2 \Einheit\hbox to0pt{\hskip#1 \Einheit \raise-4pt\hbox to0pt{\hss\Large$\bullet$\hss}\hss}} \def\Kreis(#1,#2){\unskip \raise#2 \Einheit\hbox to0pt{\hskip#1 \Einheit \raise-4pt\hbox to0pt{\hss\Large$\circ$\hss}\hss}} \def\Diagonale(#1,#2)#3{\unskip\leavevmode \xcoord#1\relax \ycoord#2\relax \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \unitlength\Einheit \line(1,1){#3}\hss}} \def\AntiDiagonale(#1,#2)#3{\unskip\leavevmode \xcoord#1\relax \ycoord#2\relax \advance\xcoord by -0.05\relax \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \unitlength\Einheit \line(1,-1){#3}\hss}} \def\Pfad(#1,#2),#3\endPfad{\unskip\leavevmode \xcoord#1 \ycoord#2 \thicklines\ZeichnePfad#3\endPfad\thinlines} \def\ZeichnePfad#1{\ifx#1\endPfad\let\next\relax \else\let\next\ZeichnePfad \ifnum#1=1 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \vrule height\Pfadd@cke width1 \Einheit depth\Pfadd@cke\hss}% \advance\xcoord by 1 \else\ifnum#1=2 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \unitlength\Einheit \line(0,1){1}\hss} \advance\xcoord by 0 \advance\ycoord by 1 \else\ifnum#1=3 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \unitlength\Einheit \line(1,1){1}\hss} \advance\xcoord by 1 \advance\ycoord by 1 \else\ifnum#1=4 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \unitlength\Einheit \line(1,-1){1}\hss} \advance\xcoord by 1 \advance\ycoord by -1 \else\ifnum#1=5 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \unitlength\Einheit \line(2,1){2}\hss} \advance\xcoord by 2 \advance\ycoord by 1 \else\ifnum#1=6 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \unitlength\Einheit \line(2,-1){2}\hss} \advance\xcoord by 2 \advance\ycoord by -1 \else\ifnum#1=7 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \unitlength\Einheit \line(3,1){3}\hss} \advance\xcoord by 3 \advance\ycoord by 1 \else\ifnum#1=8 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \unitlength\Einheit \line(3,-1){3}\hss} \advance\xcoord by 3 \advance\ycoord by -1 \fi\fi\fi\fi\fi\fi\fi\fi \fi\next} \def\hSSchritt{\leavevmode\raise-.4pt\hbox to0pt{\hss.\hss}\hskip.2\Einheit \raise-.4pt\hbox to0pt{\hss.\hss}\hskip.2\Einheit \raise-.4pt\hbox to0pt{\hss.\hss}\hskip.2\Einheit \raise-.4pt\hbox to0pt{\hss.\hss}\hskip.2\Einheit \raise-.4pt\hbox to0pt{\hss.\hss}\hskip.2\Einheit} \def\vSSchritt{\vbox{\baselineskip.2\Einheit\lineskiplimit0pt \hbox{.}\hbox{.}\hbox{.}\hbox{.}\hbox{.}}} \def\DSSchritt{\leavevmode\raise-.4pt\hbox to0pt{% \hbox to0pt{\hss.\hss}\hskip.2\Einheit \raise.2\Einheit\hbox to0pt{\hss.\hss}\hskip.2\Einheit \raise.4\Einheit\hbox to0pt{\hss.\hss}\hskip.2\Einheit \raise.6\Einheit\hbox to0pt{\hss.\hss}\hskip.2\Einheit \raise.8\Einheit\hbox to0pt{\hss.\hss}\hss}} \def\dSSchritt{\leavevmode\raise-.4pt\hbox to0pt{% \hbox to0pt{\hss.\hss}\hskip.2\Einheit \raise-.2\Einheit\hbox to0pt{\hss.\hss}\hskip.2\Einheit \raise-.4\Einheit\hbox to0pt{\hss.\hss}\hskip.2\Einheit \raise-.6\Einheit\hbox to0pt{\hss.\hss}\hskip.2\Einheit \raise-.8\Einheit\hbox to0pt{\hss.\hss}\hss}} \def\SPfad(#1,#2),#3\endSPfad{\unskip\leavevmode \xcoord#1 \ycoord#2 \ZeichneSPfad#3\endSPfad} \def\ZeichneSPfad#1{\ifx#1\endSPfad\let\next\relax \else\let\next\ZeichneSPfad \ifnum#1=1 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \hSSchritt\hss}% \advance\xcoord by 1 \else\ifnum#1=2 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \hbox{\hskip-2pt \vSSchritt}\hss}% \advance\ycoord by 1 \else\ifnum#1=3 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \DSSchritt\hss} \advance\xcoord by 1 \advance\ycoord by 1 \else\ifnum#1=4 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit \dSSchritt\hss} \advance\xcoord by 1 \advance\ycoord by -1 \fi\fi\fi\fi \fi\next} \def\Koordinatenachsen(#1,#2){\unskip \hbox to0pt{\hskip-.5pt\vrule height#2 \Einheit width.5pt depth1 \Einheit}% \hbox to0pt{\hskip-1 \Einheit \xcoord#1 \advance\xcoord by1 \vrule height0.25pt width\xcoord \Einheit depth0.25pt\hss}} \def\Koordinatenachsen(#1,#2)(#3,#4){\unskip \hbox to0pt{\hskip-.5pt \ycoord-#4 \advance\ycoord by1 \vrule height#2 \Einheit width.5pt depth\ycoord \Einheit}% \hbox to0pt{\hskip-1 \Einheit \hskip#3\Einheit \xcoord#1 \advance\xcoord by1 \advance\xcoord by-#3 \vrule height0.25pt width\xcoord \Einheit depth0.25pt\hss}} \def\Gitter(#1,#2){\unskip \xcoord0 \ycoord0 \leavevmode \LOOP\ifnum\ycoord<#2 \loop\ifnum\xcoord<#1 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit\Punkt\hss}% \advance\xcoord by1 \repeat \xcoord0 \advance\ycoord by1 \REPEAT} \def\Gitter(#1,#2)(#3,#4){\unskip \xcoord#3 \ycoord#4 \leavevmode \LOOP\ifnum\ycoord<#2 \loop\ifnum\xcoord<#1 \raise\ycoord \Einheit\hbox to0pt{\hskip\xcoord \Einheit\Punkt\hss}% \advance\xcoord by1 \repeat \xcoord#3 \advance\ycoord by1 \REPEAT} \def\Label#1#2(#3,#4){\unskip \xdim#3 \Einheit \ydim#4 \Einheit \def\lo{\advance\xdim by-.5 \Einheit \advance\ydim by.5 \Einheit}% \def\llo{\advance\xdim by-.25cm \advance\ydim by.5 \Einheit}% \def\loo{\advance\xdim by-.5 \Einheit \advance\ydim by.25cm}% %NEW DEF \O := \OX \def\o{\advance\ydim by.25cm}% \def\ro{\advance\xdim by.5 \Einheit \advance\ydim by.5 \Einheit}% \def\rro{\advance\xdim by.25cm \advance\ydim by.5 \Einheit}% \def\roo{\advance\xdim by.5 \Einheit \advance\ydim by.25cm}% \def\l{\advance\xdim by-.30cm}% \def\r{\advance\xdim by.30cm}% \def\lu{\advance\xdim by-.5 \Einheit \advance\ydim by-.6 \Einheit}% \def\llu{\advance\xdim by-.25cm \advance\ydim by-.6 \Einheit}% \def\luu{\advance\xdim by-.5 \Einheit \advance\ydim by-.30cm}% \def\u{\advance\ydim by-.30cm}% \def\ru{\advance\xdim by.5 \Einheit \advance\ydim by-.6 \Einheit}% \def\rru{\advance\xdim by.25cm \advance\ydim by-.6 \Einheit}% \def\ruu{\advance\xdim by.5 \Einheit \advance\ydim by-.30cm}% #1\raise\ydim\hbox to0pt{\hskip\xdim \vbox to0pt{\vss\hbox to0pt{\hss$#2$\hss}\vss}\hss}% } \catcode`\@=12 \section{Introduction} The composition of two sequences $(a_{n})_{n\ge1}$ and $(b_{n})_{n\ge1}$ is $(c_{n})_{n\ge1}$ defined by $C(x)=A(B(x))$ where $A,B,C$ are the respective generating functions, $A(x)=\sum_{n\ge 1}a_{n}x^{n}$ and so on. A sequence is monic if its first term is 1. There is a unique monic sequence $(b_{n})_{n\ge1}$ whose composition with itself is equal to its left shift, $(b_{2},b_{3},\ldots)$. This sequence $(b_{n})_{n\ge1}$ begins $1,1,2,6,23,104,531,\ldots$ and is called the (monic) eigensequence for composition \cite{canonical} . Consider a permutation on a set of positive integers as a list (or word of distinct letters). A subpermutation is a subword (letters in same order but not not necessarily contiguous). Thus 253 is a subpermutation of 21534. A factor is a subpermutation in which the letters are contiguous. A standard permutation is one on an initial segment of the positive integers. The reduced form of a permutation $\pi$ on an arbitrary set of positive integers, denoted reduce($\pi$), is the standard permutation obtained by replacing its smallest entry by 1, next smallest by 2, and so on. Thus reduce$(352)=231$. The length $\v \pi \v$ of a permutation $\pi$ is simply the number of letters in it. Given a permutation $\pi$ and a standard permutation $\rho$ of weakly smaller length---a ``pattern''---a subpermutation of $\pi$ whose reduced form is $\rho$ is said to be an instance of the pattern $\rho$ in $\pi$. Thus 352 forms a 231 pattern in 35124. A 321-avoiding permutation, for example, is one containing no instance of a 321 pattern. The number of 321-avoiding permutations is the Catalan number $C_{n}$ \cite{ec2}. Let $\a_{n}$ denote the set of permutations on $[n]$ in which the pattern 3241 occurs only as part of a 35241 pattern ($3\underline{5}241$OK permutations for short). This curious pattern restriction arises in connection with 2-stack-sortable permutations, which can be characterized as permutations that are both \ok and 2341-avoiding \cite{dulucq1}. With $a_{n}=\vert \a_{n} \vert$, the first several terms of $(a_{n})_{n\ge 0}$ coincide with those of $(b_{n})_{n\ge1}$ above. This suggests that $a_{n}=b_{n+1}$ and the main objective of this paper is to prove bijectively that this is so (\S 3 and \S 4). In \S 2, we consider the structure of a \ok permutation and deduce two recurrences for $a_{n}$. A bonus section (\S 5) classifies all similarly restricted patterns involving 3 or 4 letters by their counting sequences. \vspace*{6mm} \section{Structure and Recurrences for $\mathbf{3\underline{5}241}$OK Permutations} Every permutation $\pi$ on $[n]$ has the form $\pi=m_{1}L_{1}m_{2}L_{2}\ldots m_{r}L_{r}$ where $m_{1}b$, and $abnc$ is an offending 3241 pattern, or (ii) there exist $u,v$ following $b$ in $\si$ with $u>v>b$ and this time $uvnc$ is an offending 3241. \hspace*{10mm} $(\Leftarrow)$ \quad routine. \qed Set $k=\v n\tau\v$, the length of the right factor of $\pi$ starting at $n$, and set $\rho=$ reduce($\tau) \in \a_{k-1}$, capturing the underlying permutation of $\tau$. The support of $\tau$ can be captured by placing, for each $c \in$\,support($\tau)$, an asterisk (or star) right before the smallest entry of $\si$ that exceeds $c$ (necessarily an LIT entry in view of Theorem 4) or after $\max(\si)$ if there is no such entry. No information is lost if $\si$ is then reduced (keeping the stars in place) to produce $\si^{*}$ say, because only the LIT entries of $\si$ will be affected and the stars determine both the original LIT entries of $\si$ and the support of $\tau$. For example, $ \pi=(2,8,3,1,11,4,6,5,13,7,15,9,10,14,12) \in \a_{15}$ gives $k=5,\ \tau=(9,10,14,12)$ and yields the pair $\rho=(1,2,4,3),\ \si^{*}=(2, 8, 3, 1,*,*, 9, 4, 6, 5, *, 10, *, 7)$, and $\pi$ can be recovered from $\rho$ and $\si^{*}$. The length of $\si^{*}$ (disregarding the stars) coincides with the total length $n-k$ of the desired list of \ok permutations. This reduces the problem to giving a bijection from \ok permutations on $[n]$ with $k-1$ stars distributed arbitrarily, just before LIT entries or just after the maximum entry $n$, to $k$-lists of (possibly empty) \ok permutations of total length $n$. Let $X_{n,k}$ denote the subset of the preceding ``starred'' permutations on $[n]$ with (i) no stars immediately following or preceding the max $n$, and (ii) at most one star preceding each non-max LIT entry. In other words, $X_{n,k}$ is the set of \ok permutations on $[n]$ with $k-1$ distinct LIT entries other than $n$ preceded (or marked) by a star. We now show that the following result suffices to construct the desired bijection. \begin{theorem} With $X_{n,k}$ as just defined, there is a bijection from $X_{n,k}$ to the set of $k$-lists of \emph{nonempty} \ok permutations of total length $n$. \end{theorem} Consider a permutation with (possibly) multiple stars in the allowed locations, for example, with $k=8$ and hence 7 stars and with $a,b$ denoting non-max LIT entries, \[ \ldots***a\ldots*b\ldots*n**\ldots \] We will show how to represent this as an element of $X_{n,j}$ for some $j$ together with a bit sequence of $j$ 0s and $k-j$ 1s. The preceding Theorem then converts the element of $X_{n,j}$ to a $j$-list of nonempty \ok permutations of total length $n$, while the 1s in the bit sequence specify the locations for empty permutations and we have the desired $k$-list of permutations of total length $n$. To obtain the element of $X_{n,j}$ associated with the given permutation, collapse all contiguous stars to a single star and delete the stars (if any) surrounding $n$. The example yields \[ \ldots***a\ldots*b\ldots*n**\ldots \quad \rightarrow \quad \ldots*a\ldots*b\ldots n\ldots\quad \in X_{n,j} \] with $j=3$ and $j-1=2$ stars. To obtain the bit sequence associated with the given permutation, replace each star immediately preceding a non-max LIT entry and $n$ itself by 1, all other stars by 0, and then suppress the permutation entries to get a bit sequence $j$ 1s and $k-j$ 0s; the example yields \[ \ldots***a\ldots*b\ldots*n**\ldots \quad \rightarrow \quad (0\,0\,\overset{*a}{1}\,\overset{*b}{1}\,0\,\overset{n}{1}\,0\,0). \] Clearly, the original ``multiple-starred'' permutation can be uniquely recovered from the element of $X_{n,j}$ and the bit sequence, and we are all done as soon as we establish Theorem 5. In fact, we will prove Theorem 5 with a specific type of bijection that permits a further reduction in the problem. Define the \lr factors of a permutation $m_{1}L_{1}m_{2}L_{2}\ldots m_{r}L_{r}$ to be $m_{1}L_{1},m_{2}L_{2},$ $\ldots, m_{r}L_{r}$. Then there is a refined form of Theorem 5 that goes as follows. \begin{theorem} Let $X_{n,k}$ denote the set of \emph{\ok} permutations on $[n]$ with $k-1$ of the non-max LIT entries marked. Let $Y_{n,k}$ denote the set of $k$-lists of nonempty \ok permutations of total length $n$. There is a bijection from $X_{n,k}$ to $Y_{n,k}$, $\pi \rightarrow \mathbf{v}$, of the following type: it rearranges the \lr factors of $\pi$, then suitably concatenates some of them to form a $k$-list of permutations and, finally, reduces each one to yield $\mathbf{v}$. \end{theorem} It suffices to present this bijection for the special case where $L_{1},L_{2},\ldots,L_{r}$ are all increasing lists, equivalently, since $L_{1}v$ and $m_{i}uv$ is an offending 321 pattern. Conversely, if each $L_{i}$ is increasing, then a 321 must have its ``2'' and ``1'' in different blocks and $\pi$ is $32\underline{4}1$OK. (ii) If $\pi$ is $31\underline{4}2$OK yet some \lr factor $m_{i}L_{i}$ fails to be decreasing, then there exist $u$ preceding $v$ in $L_{i}$ with $ua_{2}>\ldots >a_{k-1}$ and $\pi[b,c]$ denotes an arbitrary permutation on the interval of integers $[b,c]$ (understood to be the empty permutation if $b>c$). Such permutations are clearly $\underline{1}342$OK. Conversely, given a $\underline{1}342$OK permutation, the entries $a_{1},\ldots,a_{k-1}$ preceding 1 are necessarily decreasing left to right for otherwise there is a subpermutation $a\,b\,1$ with $aa_{i-1}$ precedes some $cm_{i-1}$ and $m_{i-1}\,m_{i}\,b$ is an offending 324 pattern. \vspace*{5mm} \noindent {\large \textbf{New Sequence}}\quad The $321\underline{4}$OK permutations on $[n]$ can be counted directly by position of $n$. If $n$ occurs in last position, the rest of the permutation is unrestricted---$(n-1)!$ choices. If $n$ occurs in position $n-1$ and the last entry is $i$, then $i+1,i+2,\ldots,n$ must occur in that order else $i$ terminates an offending 321. Thus the permutation is determined by the positions of $1,2,\ldots,i-1$, for which there are $(n-2)^{\underline{i-1}}$ choices. Here $j^{\underline{i}}=j(j-1)\ldots(j-i+1)$ is the falling factorial. Now suppose $n$ occurs in position $k\le n-2$. The subpermutation following $n$ must be increasing and hence has the form $1 \le ab$ must be increasing left to right (else there exist $u>v>b$ with $u$ preceding $v$ and $u\,v\,b$ is an offending 321) and must all lie to the right of the $x_{i}$s (else some $u>b$ precedes some $x_{i}$ and $u>b>x_{i}>a$ implies $u\,x_{i}\,a$ is an offending 321). Thus the subpermutation preceding $n$ and involving entries $>a$ yields only $r!$ choices: arrange the $x_{i}$s. All told, the desired count is (with $t:=a+n-k-1$ and $n\ge 1$) \[ (n-1)!+\sum_{i=1}^{n-1}(n-2)^{\underline{i-1}} +\sum_{k=1}^{n-2} \sum_{a=1}^{k} \sum_{b=t}^{n-1}(k-1)^{\underline{a-1}}\binom{b-a-1}{n-k-2} (b-t)! = \] \[ (n-1)!+\sum_{k=0}^{n-2}\sum_{\substack{i,j\ge 0 \\ \rule{0mm}{3mm} i+j \le k}}k^{\overline{\imath}}\,(n-2-k)^{\underline{j}}. \] This sequence begins $(1, 1, 2, 5, 15, 55, 248, 1357, 8809, 66323, 568238,\ldots)_{n \ge 0}$ and is entrywise $\ge$ the next largest counting sequence \htmladdnormallink{A051295}{http://www.research.att.com:80/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A051295} $=(1,1,2,5,15,54,235,1237\ldots)$; both seem to grow asymptotically as $(n-1)!$.\qed A pattern restriction similar to one of our underlined 4-patterns arises in a recent paper \cite{patience} on ``patience sorting'' of a deck of cards into piles, namely, the restriction that a 342 pattern in which the ``4'' and ``2'' are contiguous occurs only as part of a 3142 pattern. It is almost immediate, however, that the permutations satisfying this seemingly weaker restriction coincide with our $3\underline{1}42$OK permutations (and hence are counted by the Bell numbers). \vspace{5mm} \textbf{Added in Proof.} The main result of this paper is used to obtain another manifestation of the eigensequence for composition \htmladdnormallink{A030266}{http://www.research.att.com:80/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A030266 } strictly in terms of pattern avoidance in \cite{wilfequivalence}. \vspace*{10mm} \centerline{ {\large \textbf{Acknowledgment} }} \vspace*{3mm} I thank the referee for a careful reading of the paper and several helpful remarks. \begin{thebibliography}{9} \bibitem{canonical} Mira Bernstein and N.\:J.\:A. Sloane, Some canonical sequences of integers, \emph{Linear Algebra and its Applications}, Vol. 226-228 (1995), pp. 57--72; errata Vol. 320 (2000), p. 210, \htmladdnormallink{arXiv math.CO/0205301}{http://front.math.ucdavis.edu/math.CO/0205301}. \bibitem{ec2} Richard P.\ Stanley, \emph{Enumerative Combinatorics Vol.\,2}, Cambridge University Press, 1999. Exercise 6.19 and related material on Catalan numbers are available online at \htmladdnormallink{http://www-math.mit.edu/$\,\widetilde{\ }\,$rstan/ec/ }{http://www-math.mit.edu/~rstan/ec/}. \bibitem{dulucq1} S. Dulucq, S. Gire, and O. Guibert, A combinatorial proof of J. West's conjecture, \emph{Discrete Math}. 187 (1998) 71--96. \bibitem{patience} Alexander Burstein, Combinatorics of Patience Sorting Piles, \htmladdnormallink{arXiv math.CO/0506358}{http://front.math.ucdavis.edu/math.CO/0506358}, 18 Jun 2005, 19 pp. \bibitem{wilfequivalence} David Callan, A Wilf Equivalence Related to Two Stack Sortable Permutations, 2005, preprint, \htmladdnormallink{arXiv math.CO/0510211 }{http://front.math.ucdavis.edu/math.CO/0510211 }. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2000 {\it Mathematics Subject Classification}: 05A15. \noindent \emph{Keywords: } eigensequence, \ok permutation, restricted pattern, underlined pattern. \bigskip \hrule \bigskip \noindent (Concerned with sequences \seqnum{A000108}, \seqnum{A000110}, \seqnum{A030266}, \seqnum{A051295}, \seqnum{A084938}, and \seqnum{A110447}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received August 4 2005; revised version received December 19 2005. Published in {\it Journal of Integer Sequences}, January 3 2006. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.math.uwaterloo.ca/JIS/}. \vskip .1in \end{document} .