\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb,amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf A Note on Arithmetic Progressions on Quartic Elliptic Curves} \vskip 1cm \large Maciej Ulas \\ Jagiellonian University \\ Institute of Mathematics\\ Reymonta 4 \\ 30-059 Krak\'{o}w \\ Poland \\ \href{mailto:Maciej.Ulas@im.uj.edu.pl}{Maciej.Ulas@im.uj.edu.pl} \end{center} \vskip .2 in \begin{abstract} G. Campbell described a technique for producing infinite families of quartic elliptic curves containing a length-9 arithmetic progression. He also gave an example of a quartic elliptic curve containing a length-12 arithmetic progression. In this note we give a construction of an infinite family of quartics on which there is an arithmetic progression of length 10. Then we show that there exists an infinite family of quartics containing a sequence of length 12. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{lemma}{Lemma}[section] % ------------------------------------------------------------- % A Note on Arithmetic Progressions on Elliptic Curves % ------------------------------------------------------------- \newtheorem{question}[theorem]{Open Question} %\theoremstyle{definition} %\newtheorem{definition}[theorem]{Definition} %\newtheorem{example}[theorem]{Example} %\newtheorem{xca}[theorem]{Exercise} %\theoremstyle{remark} %\newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} % Absolute value notation \newcommand{\abs}[1]{\lvert#1\rvert} % Blank box placeholder for figures (to avoid requiring any % particular graphics capabilities for printing this document). \newcommand{\blankbox}[2]{% \parbox{\columnwidth}{\centering % Set fboxsep to 0 so that the actual size of the box will match the % given measurements more closely. \setlength{\fboxsep}{0pt}% \fbox{\raisebox{0pt}[#2]{\hspace{#1}}}% }% } \newcommand{\pr}{{\mathbb P}} \newcommand{\R}{{\mathbb R}} \newcommand{\N}{{\mathbb N}} \newcommand{\Q}{{\mathbb Q}} \newcommand{\Z}{{\mathbb Z}} \newcommand{\F}{{\mathbb F}} \newcommand{\T}{{\mathbb T}} % General info % \subjclass{11G05, 11B25} % \date{May 19, 2005} % \keywords{Elliptic Curves, Arithmetic Progression} % ------------ SECTION 1: INTRODUCTION ----------------------------- \section{Introduction} Let us consider a curve $E:\; y^2=f(x)$, where $f \in \Q[x]$ and $f$ is not a square of a polynomial. We say that points $P_{i}=(x_{i},\;y_{i}),\;i=1,\ldots,\;k$ on the curve $E$ form an {\it arithmetic progression of length $k$} if the sequence $x_{1},\;x_{2},\;\ldots,\;x_{k}$ form an arithmetic progression. G. Campbell \cite{GC} proved the following theorems: \begin{theorem} There are infinitely many elliptic curves of the form $y^2=w(x)$, with $w(x)$ a quartic, containing 9 points in arithmetic progression. \end{theorem} \begin{theorem} There exists an elliptic curve in the form $y^2=w(x)$, with $w(x)$ a quartic, containing 12 points in arithmetic progression. \end{theorem} In this paper we propose two different ways to obtain an infinite family of quartic elliptic curves with a sequence of length 10. Then we present a family of quartics (parametrized by the rational points on an elliptic curve with a non zero rank) with an arithmetic progression of length 12. % ------------ SECTION 2: ARITHMETIC PROGRESSIONS OF LENGTH 10 ----------------------------- \section{Arithmetic Progressions of Length 10} The proof of the first theorem is similar to the one given by G. Campbell \cite{GC}. \begin{theorem}\label{T.1} There are infinitely many quartic elliptic curves $y^2=f(x)$ containing 10 points in arithmetic progression. \end{theorem} \begin{proof} Let us consider the following polynomial \begin{equation}\label{R.1} P_{t}(x)=(x^2-9x-4t)\prod_{i=0}^{9}(x-i)\in \Q(t)[x]. \end{equation} Then, we have \begin{align*} P_{t}(x)=Q_{t}(x)^2-F_{t}(x), \end{align*} where $Q_{t}$ is the unique monic polynomial defined over $\Q(t)$ such that $F_{t}$ has degree 4. The discriminant of the polynomial $F_{t}(x)$ is non zero for $t\in\Q \setminus S$, where \begin{center} $S=\{\pm1, \pm2, \pm4, -5,-6,-8,-11\}$. \end{center} Hence, for such parameters $t$, the quartic elliptic curve \begin{equation}\label{R.2} E_{t}:\;y^2=F_{t}(x) \end{equation} contain the points $P_{i}=(i,\;Q_{t}(i))$ for $i=0,\ldots,\;9$ which form an arithmetic progression of length 10 on the curve $E_{t}$. \end{proof} % ------------ SECTION 3: THE SEQUENCE OF LENGTH 12 ----------------------------- \section{The sequence of length 12} There doesn't seem to be a way to construct an infinite family of quartics with an arithmetic progression of length 12 from family of curves (\ref{R.2}). In this section we shall construct another family which will be better for our purposes. First let us consider the polynomial $f\in\mathbb{Q}[p,\;q,\;r,\;s,\;t][x]$ \begin{equation*} f(x)=\;\sum_{i=0}^{4}a_{i}x^{i}, \end{equation*} where \begin{align*} a_{0}=\;&5p^2-10q^2+10r^2-5s^2+t^2,\\ a_{1}=\;&\frac{1}{12}(-77p^2+214q^2-234r^2+122s^2-25t^2),\\ a_{2}=\;&\frac{1}{24}(71p^2-236q^2+294r^2-164s^2+35t^2),\\ a_{3}=\;&\frac{1}{12}(-7p^2+26q^2-36r^2+22s^2-5t^2),\\ a_{4}=\;&\frac{1}{24}(p^2-4q^2+6r^2-4s^2+t^2). \end{align*} We have \begin{center} $f(1)=p^2,\quad f(2)=q^2,\quad f(3)=r^2,\quad f(4)=s^2,\quad f(5)=t^2$, \end{center} so we see that \begin{center} $E:\;\;y^2=f(x)$ \end{center} is a five parameter family of quartics containing an arithmetic progression of length 5. In order to obtain a family with a sequence of length 10 we have to consider the following system of equations \begin{equation}\label{R.3} \begin{cases} f(6)=p^2-5q^2+10r^2-10s^2+5t^2=P^2, \\ f(7)=5p^2-24q^2+45r^2-40s^2+15t^2=Q^2, \\ f(8)=15p^2-70q^2+126r^2-105s^2+35t^2=R^2,\\ f(9)=35p^2-160q^2+280r^2-224s^2+70t^2=S^2,\\ f(10)=70p^2-315q^2+540r^2-420s^2+126t^2=T^2, \end{cases} \end{equation} in integers $p,\;q,\;r,\;s,\;t,\;P,\;Q,\;R,\;S,\;T$. Since the general solution is hard to obtain we will look for particular solutions with $P=t,\;Q=s,\;R=r,\;S=q,\;T=p$. Then, in this case it is easy to realize that (\ref{R.3}) is equivalent to \begin{equation}\label{R.4} \begin{cases} p^2=15r^2-35s^2+21t^2, \\ q^2=5r^2-9s^2+5t^2. \end{cases} \end{equation} Making a substitution $(p,\;r,\;s,\;t)=(p,\;a+p,\;b+p,\;c+p)$ we get a parametrized solution of the first equation in (\ref{R.4}) \begin{equation}\label{R.5} \begin{cases} p=15a^2-35b^2+21c^2, \\ r=-15a^2+70ab-35b^2-42ac+21c^2,\\ s=15a^2-30ab+35b^2-42bc+21c^2,\\ t=15a^2-35b^2-30ac+70bc-21c^2. \end{cases} \end{equation} Now inserting $r,\;s,\;t$ from (\ref{R.5}) to the second equation in (\ref{R.4}), we obtain \begin{align}\label{R.6} q^2=\;&441c^4-168(15a-7b)c^3+2(675a^2+2520ab-2303b^2)c^2\nonumber\\ &+40(45a^3-189a^2b+63ab^2+49b^3)c\\ &+25(9a^4-96a^3b+278a^2b^2-224ab^3+49b^4)\nonumber. \end{align} Moreover, if we take $b=3(a+1),\;c=2(a+1)$, we get that $q=3(56a^2+142a+91)$. Finally we have \begin{center} \begin{equation}\label{R.7} \begin{cases} p=T= -3(72a^2+154a+77),\\ q=S= 3(56a^2+142a+91),\\ r=R= -3(40a^2+112a+77),\\ s=Q= 3(24a^2+68a+49),\\ t=P= -3(8a^2+6a-7), \end{cases} \end{equation} \end{center} which is a solution of (\ref{R.3}). Specializing the polynomial $f$ as given by (\ref{R.7}) we obtain \begin{equation*} f_{a}(x)=\;\sum_{i=0}^{4}a_{i}x^{i}, \end{equation*} where \begin{align*} a_{0}=&\;9(7744a^4+25216a^3+22544a^2-784a-5831),\\ a_{1}=&-66(a+1)(16a+21)(24a^2-52a-119),\\ a_{2}=&\;3(a+1)(16a+21)(48a^2-709a-1085),\\ a_{3}=&\;66(a+1)(5a+7)(16a+21),\\ a_{4}=&-3(a+1)(5a+7)(16a+21),\\ \end{align*} and the discriminant $R_{a}$ of the polynomial $f_{a}$ is \begin{align*} R_{a}=&-419904(a+1)^4(2a+3)^2(4a+5)^2(2a+7)^2(4a+7)^2(5a+7)^3\\ &\times(6a+7)^2(12a+17)^2(16a+21)^4(1008a^2+1831a+623). \end{align*} Then for $a\in\mathbb{Q}\setminus W$, where \begin{center} $W:=\{-1,-3/2,-5/4,-7/2,-7/4,-7/5,-7/6,-17/12,-21/16\}$, \end{center} we get a nontrivial quartic elliptic curve \begin{equation*} C_{a}:\;y^2=f_{a}(x) \end{equation*} containing an arithmetic progression of length 10. Now we are ready to prove the following: \begin{theorem}\label{T.2} There are infinitely many quartic elliptic curves $y^2=f(x)$ containing 12 points in arithmetic progression. \end{theorem} \begin{proof} The curve $C_{a}$ defined above contains the 10 points with $x=1,\;\ldots,\;10$. Observe that \begin{equation*} f_{a}(0)=f_{a}(11)=9(7744a^4+25216a^3+22544a^2-784a-5831). \end{equation*} Now, consider the curve: \begin{equation*} E:\;Y^2=9(7744a^4+25216a^3+22544a^2-784a-5831). \end{equation*} A short computer search reveals that $P=(-1,\;15)$ is a rational point on the quartic $E$. Using the program APECS \cite{IC} we found that $E$ is birationally equivalent to the elliptic curve \begin{equation*} E':\;y^2=x^3-x^2-33433x+2213737. \end{equation*} For the curve $E'$ we have \begin{equation*} \operatorname{Tors}E(\mathbb{Q})=\{\mathcal{O},\;(127,\;0)\}, \end{equation*} and with the help of {\tt mwrank} \cite{JC} we see that the free part of $E'$ is generated by \begin{center} $G_{1}=(77,\;-300),\;G_{2}=(-193,\;-1200),\;G_{3}=(-48,\;-1925)$. \end{center} Hence the curve $E$ has an infinite number of rational points and it is clear that all but finitely many of them leads to the quartic $C_{a}$ containing arithmetic progression of length 12. \end{proof} It is natural to state the following question: \begin{question} Is there an quartic elliptic curve $E$ containing a length 13 arithmetic progression? \end{question} % ------------ SECTION 4: ACKNOWLEDGMENT----------------------------- \section{Acknowledgment} I would like to thank anonymous referee for his/her valuable comments. \vskip 1cm \nocite{*} \begin{thebibliography}{10} \bibitem{BR} A. Bremner, \newblock On arithmetic progressions on elliptic curves. \newblock {\em Experiment. Math.} {\bf 8} (1999), 409--413. \bibitem{GC} G. Campbell, \newblock \href{http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Campbell/campbell4.html}{A note on arithmetic progressions on elliptic curves}. \newblock {\em Journal of Integer Sequences}, Paper 03.1.3, 2003. \bibitem{IC} I. Connel, {\sc APECS}, available from \href{ftp.math.mcgill.ca/pub/apecs/}{\tt ftp.math.mcgill.ca/pub/apecs/}. \bibitem{JC} J. Cremona, {\tt mwrank} program, available from \hfil\break \href{http://www.maths.nottingham.ac.uk/personal/jec/ftp/progs/}{\tt http://www.maths.nottingham.ac.uk/personal/jec/ftp/progs/}. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2000 {\it Mathematics Subject Classification}: 11G05, 11B25. \noindent \emph{Keywords:} elliptic curves, arithmetic progression. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received November 11 2004; revised version received May 21 2005. Published in {\it Journal of Integer Sequences}, May 24 2005. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.math.uwaterloo.ca/JIS/}. \end{document} .