\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \usepackage{amsthm} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf The Descent Set and Connectivity Set of a Permutation } \vskip 1cm \large Richard P. Stanley\footnote{Partially supported by NSF grant \#DMS-9988459 and by the Institut Mittag-Leffler.}\\ Department of Mathematics \\ Massachusetts Institute of Technology \\ Cambridge, MA 02139 \\ USA\\ \href{mailto:rstan@math.mit.edu}{\tt rstan@math.mit.edu} \\ \end{center} \vskip .2 in \begin{abstract} The descent set $D(w)$ of a permutation $w$ of $1,2,\dots,n$ is a standard and well-studied statistic. We introduce a new statistic, the \emph{connectivity set} $C(w)$, and show that it is a kind of dual object to $D(w)$. The duality is stated in terms of the inverse of a matrix that records the joint distribution of $D(w)$ and $C(w)$. We also give a variation involving permutations of a multiset and a $q$-analogue that keeps track of the number of inversions of $w$. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{lemma}{Lemma}[section] %\documentclass[12pt]{article} \input{psfig.sty} %\newtheorem{theorem}{Theorem}[section] %\newtheorem{proposition}[theorem]{Proposition} %\newtheorem{lemma}[theorem]{Lemma} %\newtheorem{corollary}[theorem]{Corollary} %\newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{definition} \newtheorem{defn}{Definition}[section] \newtheorem{example}{Example}[section] \theoremstyle{remark} \newtheorem*{remark}{Remark} \newtheorem*{notation}{Notation} \newcommand{\beq}{\begin{equation}} \newcommand{\eeq}{\end{equation}} \newcommand{\beas}{\begin{eqnarray*}} \newcommand{\eeas}{\end{eqnarray*}} \newcommand{\zz}{\mathbb{Z}} \newcommand{\pp}{\mathbb{P}} \newcommand{\nn}{\mathbb{N}} \newcommand{\rr}{\mathbb{R}} \newcommand{\bm}[1]{{\mbox{\boldmath $#1$}}} \newcommand{\con}{\mathrm{Comp}(n)} \newcommand{\sn}{\mathfrak{S}_n} \newcommand{\fs}{\mathfrak{S}} \newcommand{\st}{\,:\,} \section{A duality between descents and connectivity.} \label{sec1} \indent Let $\sn$ denote the symmetric group of permutations of $[n]=\{1,2,\dots,n\}$, and let $w=a_1a_2\cdots a_n\in\sn$. The \emph{descent set} $D(w)$ is defined by $$ D(w) = \{i\st a_i>a_{i+1}\}\subseteq [n-1]. $$ The descent set is a well-known and much studied statistic on permutations with many applications, e.g., \cite[Exam.~2.24, Thm.~3.12.1]{ec1}\cite[{\S}7.23]{ec2}. Now define the \emph{connectivity set} $C(w)$ by \beq C(w) = \{i\st a_ja_j\}. $$ Thus define $$ X(q)_{ST} =\sum_{{w\in\sn\atop C(w)=\overline{S},\ D(w)=T}}q^{\mathrm{inv}(w)}, $$ and similarly for $Z(q)_{ST}$ and $Y(q)_{ST}$. We will obtain $q$-analogues of Theorems~\ref{thm:alpha} and \ref{thm:main} with completely analogous proofs. Write $\bm{(j)}=1+q+\cdots+q^{j-1}$ and $\bm{(j)!}=\bm{(1)(2) \cdots (j)}$, the standard $q$-analogues of $j$ and $j!$. Let $S=\{i_1,\dots,i_k\}_<\subseteq [n-1]$, and define $$ \eta(S,q) = \bm{i_1!\,(i_2-i_1)!\cdots (i_k-i_{k-1})!\, (n-i_k)!}. $$ Let $T\subseteq [n-1]$, and let $\overline{T}= \{i_1,\dots,i_k\}_<$. Define $$ z(T) = {i_1\choose 2}+{i_2-i_1\choose 2}+\cdots+ {n-i_k\choose 2}. $$ Note that $z(T)$ is the least number of inversions of a permutation $w\in\sn$ with $T\subseteq D(w)$. \begin{theorem} \label{thm:qalpha} We have $$ Z(q)_{ST}=\left\{ \begin{array}{rl} q^{z(T)}\eta(\overline{S},q)/\eta(\overline{T},q), & \mathrm{if}\ \overline{S}\cap T=\emptyset;\\ 0, & \mathrm{otherwise}. \end{array} \right. $$ \end{theorem} \textbf{Proof.} Preserve the notation from the proof of Theorem~\ref{thm:alpha}. If $(s,t)$ is an inversion of $w$ (i.e., $sa_t$) then for some $0\leq h\leq j$ we have $c_h+1\leq s