\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \usepackage{amsthm} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf Bijective Proofs of Parity Theorems for Partition Statistics} \vskip 1cm \large Mark Shattuck\\ Department of Mathematics\\ University of Tennessee\\ Knoxville, TN 37996-1300 \\ USA\\ \href{mailto:shattuck@math.utk.edu}{\tt shattuck@math.utk.edu}\\ \end{center} \vskip .2 in \begin{abstract} We give bijective proofs of parity theorems for four related statistics on partitions of finite sets. A consequence of our results is a combinatorial proof of a congruence between Stirling numbers and binomial coefficients. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{lemma}{Lemma}[section] %\usepackage{amsmath} %\usepackage{amssymb} \newtheorem{theo}{Theorem} \theoremstyle{remark} \newtheorem*{rem}{Remark} \numberwithin{equation}{section} \numberwithin{theo}{section} \allowdisplaybreaks[4] \section{Introduction}\label{sec1} The notational conventions of this paper are as follows: $\mathbb{N}:=\{0,1,2,\dots\}$, $\mathbb{P}:=\{1,2,\dots\}$, $[0]:=\varnothing$, and $[n]:=\{1,\dots,n\}$ for $n\in\mathbb{P}$. Empty sums take the value $0$ and empty products the value $1$, with $0^0:=1$. The binomial coefficient $\binom nk$ is equal to zero if $k$ is a negative integer or if $0\leqslant n