\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \usepackage{amsthm} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf A Self-Indexed Sequence} \vskip 1cm \large Emmanuel Preissmann \\ 11 rue Vinet \\ 1004 Lausanne \\ Switzerland \\ \href{mailto:emmanuel.preissmann@lth.epfl.ch}{\tt emmanuel.preissmann@lth.epfl.ch} \\ \end{center} \vskip .2 in \begin{abstract} We investigate the integer sequence $\left(t_{n}\right)_{n\in\mathbb{Z}}$ defined by $t_{n}=0$ if $n\leq0$, $t_{1}=1$, and $t_{n}=\sum_{i=1}^{n-1}t_{n-t_{i}}$ for $n \geq 2$. This sequence has the following properties: if we consider $f_{n}(X):=-1+\sum_{i=1}^{n}X^{t_{i}}$ and take $x_{n}$ to be the real positive number such that $f_{n}(x_{n})=0$, then \[ \lim_{n\rightarrow\infty}\frac{t_{n}}{t_{n+1}}=\lim_{n\rightarrow\infty}x_{n}=0.410098516\cdots\] Moreover, if $u$ is the real positive number such that $1=\sum_{i=1}^{\infty} u^{-t_i}$, then there is a positive constant $M$ such that $t_n\sim Mu^n$. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{lemma}{Lemma}[section] \newtheorem{remark}{Remark}[section] %\documentclass[12pt]{amsart} %\usepackage[T1]{fontenc} %\usepackage[latin1]{inputenc} %\pagestyle{empty} %\usepackage{amssymb} \makeatletter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Textclass specific LaTeX commands. %\theoremstyle{plain} \newtheorem{thm}{Theorem}[section] \numberwithin{equation}{section} %% Comment out for sequentially-numbered \numberwithin{figure}{section} %% Comment out for sequentially-numbered %\theoremstyle{plain} %\theoremstyle{plain} %\newtheorem*{thm*}{Theorem} %\theoremstyle{plain} %\newtheorem*{cor*}{Corollary} %\theoremstyle{plain} %\newtheorem{lem}[thm]{Lemma} %%Delete [thm] to re-start numbering %\theoremstyle{remark} %\newtheorem*{rem*}{Remark} %\theoremstyle{remark} %\newtheorem*{acknowledgement*}{Acknowledgement} %\usepackage{verbatim} %\usepackage{babel} %\makeatother %\begin{document} \section{Definitions and main results} If we look in the \href{http://www.research.att.com/~njas/sequences/index.html}{Online Encyclopedia of Integer Sequences} of N.~J.~A.~Sloane \cite{ref1}, we find a remarkable sequence by $\left(t_{n}\right)_{n\in\mathbb{Z}}$ defined by $t_{n}=0$ if $n\leq0$, $t_{1}=1$ and\begin{eqnarray} t_{n} & = & \sum_{i=1}^{n-1}t_{n-t_{i}}\label{eq:1}\end{eqnarray} for $n \geq 2$. This sequence is due to Robert Lozyniak (\seqnum{A052109} in Sloane) and is a cousin of the Hofstadter-Conway \$10,000 challenge sequence (\seqnum{A004001} in Sloane). We find $t_{2}=1,t_{3}=2,t_{4}=5,t_{5}=12,t_{6}=30,t_{7}=73,\ldots$ Observe that if $n\geq2$ , $t_{n+1}=2t_{n}+\cdots\geq2t_{n}$. Since $t_{4}=4+1$, we have\begin{equation} t_{n}\geq n+1\quad(n\geq4)\label{eq:2}\end{equation} The serie $\sum_{i=1}^{\infty}X^{t_{i}}=2X+X^{2}+\cdots$ converges for $\left|X\right|<1$. Let $u$ be the real positive number such that\begin{equation} \sum_{i=1}^{\infty}u^{-t_{i}}=1\label{eq:3}\end{equation} We easily see that $21$ and $\sum_{i=1}^{\infty}\left(\frac{1}{3}\right)^{t_{i}}<\frac{2}{3}+\frac{1}{9}\sum_{i=0}^{\infty}\left(\frac{1}{3}\right)^{i}=\frac{5}{6}$. \begin{theorem} There exists a positive constant $M$ such that \[ \lim_{n\rightarrow\infty}\frac{t_{n}}{u^{n}}=M .\] \end{theorem} \begin{corollary} Let $n\geq2$ be an integer. Let $f_{n}(X)=-1+\sum_{i=1}^{n}X^{t_{i}}$ and take $x_{n}$ the real positive number such that $f_{n}(x_{n})=0$. Then\[ \lim_{n\rightarrow\infty}\frac{t_{n}}{t_{n+1}}= \frac{1}{u}=\lim_{n\rightarrow\infty}x_{n}=0.410098516\cdots . \] \end{corollary} \begin{proof} By the theorem, $t_n\sim Mu^n$, therefore $\lim_{n\rightarrow\infty}\frac{t_{n}}{t_{n+1}}=\frac{1}{u}$ . In addition, the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is strictly decreasing. Indeed,\[ \sum_{i=1}^{n}x_{n}^{t_{i}}=1=\sum_{i=1}^{n+1}x_{n+1}^{t_{i}}\] so that \[ \sum_{i=1}^{n}\left(x_{n+1}^{t_{i}}-x_{n}^{t_{i}}\right)=-x_{n+1}^{t_{n+1}}<0\] This proves that $x_{n+1}0$. We have\[ 00$, then the following inequalities are equivalent\begin{eqnarray} \sum_{n=1}^{\infty}v_{n} & < & \infty\label{eq:a}\\ \prod_{n=1}^{\infty}\left(1-v_{n}\right) & > & 0 .\label{eq:b}\end{eqnarray} \end{lemma} \begin{proof} Without loss of generality, we can suppose that $v_{n}\leq\frac{1}{2}$. If an infinite number of $v_{n}>\frac{1}{2}$, the claims \ref{eq:a} and \ref{eq:b} are both wrong, otherwise we can take out the finite number of $v_{n}>\frac{1}{2}$. By Taylor expansion, we have for $0\leq x \leq \frac{1}{2}$ \[ -\log(1-x)=x+\frac{1}{2} \frac{x^2}{(1-\theta x)^{2}},\quad0\leq\theta\leq1 ; \] hence $x\leq-\log(1-x)\leq2x$ for $0\leq x\leq\frac{1}{2}$. It follows that for every integer $N>0$ we have\[ \sum_{n=1}^{N}v_{n}\leq-\log\prod_{n=1}^{N}\left(1-v_{n}\right)\leq2\sum_{n=1}^{N}v_{n} .\] So the lemma is proved. \end{proof} \begin{lemma} \label{lem:2}There exists a constant $d$ such that\[ 00 . \] \end{lemma} \begin{proof} Suppose that $n\geq4$ and $d_{n}$ is such that $00}^{n}d_{n}u^{n+1-t_{i}} . \] By Eq.\ (\ref{eq:2}), $n+1-t_{n}\leq0$. Hence\[ t_{n+1}\geq d_{n}u^{n+1}\sum_{i=1 \atop n+1-t_i > 0}^{n}u^{-t_{i}}=d_{n}u^{n+1}\sum_{i=1 \atop n+1-t_i > 0}^{\infty}u^{-t_{i}}=d_{n}u^{n+1}(1-v_{n})\] where $v_{n}=\sum_{i=1,\, t_{i}\ge n+1}^{\infty}u^{-t_{i}}$ by definition of $u$. So we have\begin{equation} d_{n}(1-v_{n})\leq\frac{t_{k}}{u^{k}}\quad\textrm{for }1\leq k\le n+1 . \label{eq:4} \end{equation} The series $$ \sum_{n=4}^{\infty}v_{n} = \sum_{n=4}^{\infty}\sum_{i=1 \atop t_{i}\geq n+1}^{\infty}u^{-t_{i}} = \sum_{i=1}^{\infty}u^{-t_i} \sum_{4\leq nN\geq1$. Then we have \[ t_{n+k}\leq t'_{k+2}t_{n}+u^{n+k}C_{N}\left(1-\frac{t'_{k+2}}{u^{k}}\right)+a_{k}u^{N} . \] \end{lemma} \begin{proof} By induction on $k$. For $k=0$, the claim is true. Suppose that $l\geq1$ and that the lemma is true for $k=0,1,\ldots,(l-1)$. By Eq.\ (\ref{eq:1}), \[ t_{n+l}=\sum_{i=1}^{n+l-1}t_{n+l-t_i}\leq\sum_{i=1}^{\infty}t_{n+l-t_{i}}= \Sigma_{1}+\Sigma_{2}+\Sigma_{3}\] where\begin{eqnarray*} \Sigma_{1} & = & \sum_{i=1 \atop n+l-t_{i}\geq n}^{\infty}t_{n+l-t_{i}}\\ \Sigma_{2} & = & \sum_{i=1 \atop N\leq n+l-t_{i}2$,\[ \Sigma_{3}\leq\sum_{i=1}^{N}t_{i}\leq\sum_{i=0}^{N-1}u^{i}=\frac{u^{N}-1}{u-1}0$ such that $d'\leq\frac{t'_{n}}{u^{n}}$ for every $n\geq2$. \end{lemma} \begin{proof} Suppose that $d'_{n}\leq\frac{t'_{k}}{u^{k}}$ for every $2\leq k\leq n$. Then\[ t'_{n+1}= \sum_{i=1}^{\infty}t'_{n+1-t_{i}}\geq \sum_{i=1,\, n+1-t_{i}>1}^{\infty}d'_{n}u^{n+1-t_{i}} .\] So we proved $\frac{t'_{n+1}}{u^{n+1}}\geq d'_{n} (1-\sum_{i=1,\, t_{i}\geq n}^{\infty}u^{-t_{i}})=d'_{n}(1-v_{n-1})$, with $v_{n}$ defined as in Lemma \ref{lem:2}. Hence, $00$. \end{lemma} \begin{proof} For $m=1,$ this is true. if $m\geq2$, we see by induction that \[ a_{m}=1+\sum_{i=1,\, m>t_{i}}^{\infty}a_{m-t_{i}}\leq1+\sum_{i=1,\, m>t_{i}}^{\infty}(u^{m-t_{i}}-1)\] Since $\sum_{i=1,\, m>t_{i}}1\geq2$ and by (\ref{eq:3}),\[ a_{m}\leq1-\sum_{i=1,\: m>t_{i}}^{\infty}1+u^{m}\sum_{i=1,\: m>t_{i}}^{\infty}u^{-t_{i}}0$. There exists $N$ such that $C\leq C_{N}N$ such that $u^{N-n}<\epsilon$ and $\frac{t_{n}}{u^{n}}C-\epsilon.$ Then $C-\epsilon