\documentclass[12pt]{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \usepackage{amssymb} \usepackage{psfig,epsf} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \makeatletter \def\section{\@startsection {section}{1}{\z@}{-3.5ex plus -1ex minus -.2ex}{2.3ex plus .2ex}{\normalsize\bf}} % put a period after section or subsection number in header \def\@sect#1#2#3#4#5#6[#7]#8{\ifnum #2>\c@secnumdepth \def\@svsec{}\else \refstepcounter{#1}\edef\@svsec{\csname the#1\endcsname.\hskip .75em }\fi \@tempskipa #5\relax \ifdim \@tempskipa>\z@ \begingroup #6\relax \@hangfrom{\hskip #3\relax\@svsec}{\interlinepenalty \@M #8\par}% \endgroup \csname #1mark\endcsname{#7}\addcontentsline {toc}{#1}{\ifnum #2>\c@secnumdepth \else \protect\numberline{\csname the#1\endcsname}\fi #7}\else \def\@svsechd{#6\hskip #3\@svsec #8\csname #1mark\endcsname {#7}\addcontentsline {toc}{#1}{\ifnum #2>\c@secnumdepth \else \protect\numberline{\csname the#1\endcsname}\fi #7}}\fi \@xsect{#5}} % put a period after theorem and theorem-like numbers \def\@begintheorem#1#2{\it \trivlist \item[\hskip \labelsep{\bf #1\ #2.}]} \makeatother \newtheorem{theorem}{Theorem} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo110.eps} \vskip1cm {\LARGE\bf Generating Functions via Hankel and} \\ [+.05in] {\LARGE\bf Stieltjes Matrices}\\ \vskip 1.5cm {\large Paul Peart and Wen-Jin Woan} \bigskip \\ Department of Mathematics \\ Howard University \\ Washington D.C. 20059 \medskip \\ Email address: \href{mailto:pp@scs.howard.edu}{pp@scs.howard.edu} \vskip2cm {\bf Abstract} \end{center} {\em When the Hankel matrix formed from the sequence $% 1,a_1,a_2,...$ has an $LDL^T$ decomposition, we provide a constructive proof that the Stieltjes matrix $S_L$ associated with $L$ is tridiagonal. In the important case when $L$ is a Riordan matrix using ordinary or exponential generating functions, we determine the specific form that $S_L$ must have, and we demonstrate, constructively, a one-to-one correspondence between the generating function for the sequence and $S_L$. If $L$ is Riordan when using ordinary generating functions, we show how to derive a recurrence relation for the sequence.} \vspace*{+.1in} \noindent \textbf{Keywords. }Hankel matrix, Stieltjes matrix, ordinary generating function, exponential generating function, Riordan matrix, LDU decomposition, tridiagonal matrix.\medskip\ \section{Introduction} For each sequence in a large class of important combinatorial sequences, we can derive a closed form expression for an ordinary or exponential generating function starting with the associated Hankel matrix or Stieltjes matrix. In this paper we give explicit relationships between the generating function, the Hankel matrix and the Stieltjes matrix. We also provide several illustrative examples. In [3], some work was done using the Hankel matrix approach, but the conditions under which the method would work were not determined, or were only implicitly conjectured. In the present paper we use the Stieltjes matrix to obtain significant improvements in the analysis and application of the method. Our basic assumption is that the Hankel matrix generated by the sequence has an $LDU$ factorization, where $L$ is a lower triangular matrix with all diagonal elements equal to one, $U=L^T,$ and $D$ is a diagonal matrix with all diagonal elements nonzero. The Hankel matrix generated by the sequence $% a_0,a_1,a_2,...$, is given by the infinite matrix \[ H=\left[ \begin{array}{cccccc} a_0 & a_1 & a_2 & a_3 & a_4 & . \\ a_1 & a_2 & a_3 & a_4 & a_5 & . \\ a_2 & a_3 & a_4 & a_5 & a_6 & . \\ a_3 & a_4 & a_5 & a_6 & a_7 & . \\ a_4 & a_5 & a_6 & a_7 & a_8 & . \\ . & . & . & . & . & . \end{array} \right] \;. \] Without loss of generality we take $a_0=1$. A necessary and sufficient condition for $H$ to have an $LDU$ factorization is that $H$ be positive definite. When $L$ is a Riordan matrix (see Section 2) using ordinary or exponential generating functions, our method will find a closed form expression for the generating function of the sequence $1,a_1,a_2,a_3,...$ In the the ordinary generating function case we can then use [4] to find a recurrence relation for the sequence.\medskip\ \paragraph{Example 1.} Delannoy numbers: $1,3,13,63,321,1683,...$\\This is sequence \htmladdnormallink{A1850}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=001850} in [5]. See also [1, p.~81]. We apply Gaussian elimination to the Hankel matrix to obtain $H=\left[ \begin{array}{cccccc} 1 & 3 & 13 & 63 & 321 & . \\ 3 & 13 & 63 & 321 & 1683 & . \\ 13 & 63 & 321 & 1683 & 8989 & . \\ 63 & 321 & 1683 & 8989 & 48639 & . \\ 321 & 1683 & 8989 & 48639 & 265729 & . \\ . & . & . & . & . & . \end{array} \right] =$\medskip\ $\left[ \begin{array}{cccccc} 1 & & & & & . \\ 3 & 1 & & & & . \\ 13 & 6 & 1 & & & . \\ 63 & 33 & 9 & 1 & & . \\ 321 & 180 & 62 & 12 & 1 & . \\ . & . & . & . & . & . \end{array} \right] \left[ \begin{array}{cccccc} 1 & & & & & . \\ & 4 & & & & . \\ & & 8 & & & . \\ & & & 16 & & . \\ & & & & 32 & . \\ . & . & . & . & . & . \end{array} \right] \left[ \begin{array}{cccccc} 1 & 3 & 13 & 63 & 321 & . \\ & 1 & 6 & 33 & 180 & . \\ & & 1 & 9 & 62 & . \\ & & & 1 & 12 & . \\ & & & & 1 & . \\ . & . & . & . & . & . \end{array} \right] .$\bigskip\ The Stieltjes matrix $S_L$ associated with $L$ is the matrix $S_L=L^{-1}\overline{L}$, where $\overline{L}$ is obtained from $L$ by deleting the first row. (See Section 2 for more details about the Stieltjes matrix.) In Example 1, \[ S_L=\left[ \begin{array}{cccccc} 3 & 1 & & & & . \\ 4 & 3 & 1 & & & . \\ & 2 & 3 & 1 & & . \\ & & 2 & 3 & 1 & . \\ & & & 2 & 3 & . \\ . & . & . & . & . & . \end{array} \right] . \] From its definition $S_L$ gives the rule of formation of $L.$ Specifically, it gives a rule for obtaining the $n^{th}$ row of $L$ from the previous row. In the example, we have for $n\geq 1$% \[ l_{n0}=3l_{n-1,0}+4l_{n-1,1} \] \[ l_{nk}=l_{n-1,k-1}+3l_{n-1,k}+2l_{n-1,k+1}\quad ,\quad k\geq 1\,. \] It is convenient to define the leftmost column of $L$ to be the zeroth column, and the first row to be the zeroth row. We say that the zeroth column of $L$ has a $\{3,4\}$ rule of formation and that the $k^{th}$ column, $% k\geq 1,$ has a $\{1,3,2\}$ rule of formation. Notice that the zeroth column of $L$ contains the Delannoy numbers and that $S_L$ is tridiagonal. In Section 2 we prove that whenever $H=LDU$, then $S_L$ is tridiagonal. From Theorem 2 in Section 2 we see that the Delannoy numbers have a closed-form ordinary generating function given by \[ g(x)=\frac 1{1-3x-4xf}=\frac 1{\sqrt{1-6x+x^2}}~, \] where \[ f(x)=x(1+3f+2f^2)=\frac{1-3x-\sqrt{1-6x+x^2}}{4x}~. \] Since $S_L$ is tridiagonal and $L$ is a Riordan matrix, we can use [4] to obtain for the Delannoy numbers the recurrence \begin{eqnarray*} na_n &=&3(4n-3)a_{n-1}-19(2n-3)a_{n-2}+3(4n-9)a_{n-3}-(n-3)a_{n-4}; \\ \mbox{for}~n &\geq &4, ~\mbox{with}~ a_0=1, a_1=3, a_2=13, a_3=63\,. \end{eqnarray*} \paragraph{Example 2.} Bell numbers: $1,1,2,5,15,52,203,877,4140,21147,...$\\% This sequence illustrates the exponential generating function case. It is sequence \htmladdnormallink{A110}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000110} in [5]. Here\\$L=\left[ \begin{array}{cccccc} 1 & & & & & . \\ 1 & 1 & & & & . \\ 2 & 3 & 1 & & & . \\ 5 & 10 & 6 & 1 & & . \\ 15 & 37 & 31 & 10 & 1 & . \\ . & . & . & . & . & . \end{array} \right]$ and $S_L=\left[ \begin{array}{cccccc} 1 & 1 & & & & . \\ 1 & 2 & 1 & & & . \\ & 2 & 3 & 1 & & . \\ & & 3 & 4 & 1 & . \\ & & & 4 & 5 & . \\ . & . & . & . & . & . \end{array} \right] .$\\ From Theorem 3 in Section 2, the form of $S_L$ indicates that the exponential generating function $g(x)$ of the Bell numbers is given by \[ \ln (g)=\int (1+f)dx,\quad g(0)=1, \] where \[ f^{\prime }(x)=1+f(x),\quad f(0)=0. \] So we obtain \[ f(x)=e^x-1\quad \mbox{and}\quad g(x)=e^{e^x-1}. \] We have found that the method works for many other important combinatorial sequences. These include \begin{itemize} \item the Catalan numbers: $1, 1, 2, 5, 14, 42, 132, 429, \ldots$ (sequence \htmladdnormallink{A108}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000108}) \item the shortened Catalan sequence: 1, 2, 5, 14, 42, 132, 429, $\ldots$ \item the Catalan numbers interspersed with zeros: $1,0,1,0,2,0,5,0,14,0,42, \ldots$ \item central binomial coefficients: $1,2,6,20,70,252,,924,3432, \ldots$ (\htmladdnormallink{A984}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000984}) \item central trinomial coefficients: $1,1,3,7, 19, 51, 141, \ldots$ (\htmladdnormallink{A2426}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=002426}), \item Schr\"{o}der's numbers: $1, 2, 6, 22, 90, 394, 1806, \ldots$ (\htmladdnormallink{A6318}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=006318}) \item Schr\"{o}der's second problem: $1,1,3,11,45,197,903,4279, \ldots$ (\htmladdnormallink{A1003}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=001003}) \item gamma numbers or Motzkin sums: $1,0,1,1,3,6,15,36,91,232, \ldots$ (\htmladdnormallink{A5043}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=005043}) \item Fine numbers: $1,0,1,2,6,18,57,186,622, \ldots$ (\htmladdnormallink{A957}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000957}) \item directed animals: $1,2,5,13,35,96,267,750,2123, \ldots$ (\htmladdnormallink{A5773}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=005773}) \item telephone numbers, or self-inverse permutations: $1,1,2,4,10,26,76,232,764, \ldots$ (\htmladdnormallink{A85}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000085}) \item derangement numbers: $1,0,1,2,9,44,265,1854,14833, \ldots$ (\htmladdnormallink{A166}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000166}). \end{itemize} In Section 2 we show that whenever $H=LDU$ then $S_L$ is always tridiagonal, and we give the specific form of $S_L$. Theorem 2 in that section indicates the specific form that $S_L$ must have for $L$ to be a Riordan matrix with ordinary generating functions. Theorem 3 indicates the specific form that $S_L$ must have for $L$ to be Riordan with exponential generating functions. In Section 3 we give some further examples.\medskip \section{Definitions and Theorems} \paragraph{Definition.} The\ \textbf{Hankel matrix}\textit{\ }$% H=(h_{nk})_{n,k\geq 0}$ generated by the sequence $1,a_1,a_2,a_3,...$ is given by \[ h_{00}=1,\quad h_{nk}=a_{n+k}\quad \mbox{for}\quad n\geq 0,\quad k\geq 0. \] \paragraph{Definition.} Let $L=(l_{nk})_{n,k\geq 0}$ be a lower triangular matrix with $l_{ii}=1$ for all $i\geq 0$ . The \textbf{Stieltjes matrix} $S_L$ associated with $L$ is given by $S_L=L^{-1}\overline{L}$, where $\overline{L}$ is obtained from $L$ by deleting the first row of $L.$ That is, the element in the $n^{th}$ row and $k^{th}$ column of $\overline{L% }$ is given by \[ \overline{l}_{nk}=l_{n+1,k}\,. \] \paragraph{Remark.} We note that $S_L$ is unique, and so \[ S_L=S_{\widetilde{L}}\Leftrightarrow L=\widetilde{L}\,. \] \paragraph{Remark.} If $S_L=(s_{ik})_{i,k\geq 0}$ then \[ l_{nk}=\sum\limits_{i\geq o}s_{ik}l_{n-1,i}\quad \mbox{for}\quad n\geq 1\,. \] That is, from $S_L$ , we obtain a rule for computing the $n^{th}$ row of $L$ from the $(n-1)^{th}$ row.\\ \medskip \paragraph{Remark.} $S_L$ is tridiagonal if and only if there exist sequences $\{\lambda _k\}_{k\geq 0}$ , and $\{\mu _k\}_{k\geq 0}$ such that \[ l_{n0}=\lambda _0l_{n-1,0}+\mu _0l_{n-1,1}\quad \mbox{for}\quad n\geq 1, \] \[ l_{nk}=l_{n-1,k-1}+\lambda _kl_{n-1,k}+\mu _kl_{n-1,k+1}\quad \mbox{for}\quad k\geq 1\quad \mbox{and}\quad n\geq 1, \] and \[ s_{00}=\lambda _0,\quad s_{10}=\mu _0\;,\quad \mbox{and~for}\quad k\geq 1\;,\;s_{kk}=\lambda _k\;,\;s_{k+1,k}=\mu _k\,. \] \paragraph{Definition.} A \textbf{Riordan matrix with ordinary generating functions\ }is a lower triangular matrix for which the generating function for the $k^{th}$ column, $k\geq 0$, is given by $g(x)[f(x)]^k$ , where \[ g(x)=1+g_1x+g_2x^2+ \cdots \quad\mbox{and}\quad f(x)=x+f_2x^2+f_3x^3+ \cdots \] \paragraph{Definition.} A \textbf{Riordan matrix with exponential generating functions\ }is a lower triangular matrix for which the generating function for the $k^{th}$ column, $k\geq 0,$ is given by $\frac 1{k!}g(x)[f(x)]^k$ , where \[ g(x)=1+g_1x+g_2\frac{x^2}{2!}+g_3\frac{x^3}{3!}+\cdots \quad\mbox{and}\quad f(x)=x+f_2% \frac{x^2}{2!}+f_3\frac{x^3}{3!}+ \cdots~. \] See [2] for a detailed description of Riordan matrices. In [6] Woodson explores other kinds of Riordan matrices.\bigskip\ \\ \bigskip% \begin{theorem}\label{th1} Let $H=(h_{nk})_{n,k\geq 0}$ be the Hankel matrix generated by the sequence $1,a_1,a_2,a_3,...$ Assume that $H=LDU$ where \[ L=(l_{nk})_{n,k\geq 0}=\left[ \begin{array}{cccccc} 1 & & & & & . \\ l_{10} & 1 & & & & . \\ l_{20} & l_{21} & 1 & & & . \\ l_{30} & l_{31} & l_{32} & 1 & & . \\ l_{40} & l_{41} & l_{42} & l_{43} & 1 & . \\ . & . & . & . & . & . \end{array} \right] , \] \[ D=\left[ \begin{array}{cccccc} d_0 & & & & & . \\ & d_1 & & & & . \\ & & d_2 & & & . \\ & & & d_3 & & . \\ & & & & d_4 & . \\ . & . & . & . & . & . \end{array} \right] \quad \quad d_i\neq 0\quad for\;all\;i,\quad \quad U=L^T\,. \] That is, \[ h_{nk}=\sum\limits_{i=0}^kd_il_{ki}l_{ni}\,. \] Then the Stieltjes matrix $S_L$ is tridiagonal with the form \[ S_L=\left[ \begin{array}{cccccc} \lambda _0 & 1 & & & & . \\ \mu _0 & \lambda _1 & 1 & & & . \\ & \mu _1 & \lambda _2 & 1 & & . \\ & & \mu _2 & \lambda _3 & 1 & . \\ & & & \mu _3 & \lambda _4 & . \\ . & . & . & . & . & . \end{array} \right] \,, \] where \[ \lambda _0=a_1\;,\quad \mu _0=d_1\;,\quad \lambda _k=l_{k+1,k}-l_{k,k-1}\;,\quad \mu _k=\frac{d_{k+1}}{d_k}\;,\quad k\geq 1\,. \] \end{theorem} \paragraph{Proof.} We will prove that \[ l_{n0}=a_1l_{n-1,0}+d_1l_{n-1,1} \] and \[ l_{nk}=l_{n-1,k-1}+\lambda _kl_{n-1,k}+\mu _kl_{n-1,k+1}\quad for\;all\;k\geq 1. \] We use induction on $k.$ From the definition of the Hankel matrix, \[ h_{nk}=h_{n-1,k+1}\quad \mbox{for all}\quad k\geq 0\quad\mbox{and}\quad n\geq 1 \] \[ h_{n0}=h_{n-1,1}\Leftrightarrow d_0l_{n0}=d_0l_{n-1,0}l_{10}+d_1l_{n-1,1}l_{11}\Leftrightarrow l_{n0}=a_1l_{n-1,0}+d_1l_{n-1,1}\;. \] \[ h_{n1}=h_{n-1,2}\Leftrightarrow d_0l_{10}l_{n0}+d_1l_{11}l_{n1}=d_0l_{20}l_{n-1,0}+d_1l_{21}l_{n-1,1}+d _2l_{22}l_{n-1,2} \] \begin{eqnarray*} &\Leftrightarrow &d_1l_{n1}=l_{20}l_{n-1,0}-l_{10}l_{n0}+d_1l_{21}l_{n-1,1}+d_2l_{n-1,2} \\ &\Leftrightarrow &d_1l_{n1}=d_1l_{n-1,0}+d_1(l_{21}-l_{10})l_{n-1,1}+d_2l_{n-1,2} \\ \quad &\Leftrightarrow &l_{n1}=l_{n-1,0}+\lambda _1l_{n-1,1}+\mu _1l_{n-1,2} \end{eqnarray*} Now assume that \[ l_{ni}=l_{n-1,i-1}+\lambda _il_{n-1,i}+\mu _il_{n-1,i+1}\quad for\quad 1\leq i\leq k-1\,. \] Then \begin{eqnarray*} h_{nk} &=&h_{n-1,k+1}\Leftrightarrow \sum\limits_{i=0}^kd_il_{ki}l_{ni}=\sum% \limits_{i=0}^{k+1}d_il_{k+1,i}l_{n-1,i} \\ &\Leftrightarrow &\sum\limits_{i=0}^{k-1}d_il_{ki}l_{ni}-\sum% \limits_{i=0}^{k-1}d_il_{k+1,i}l_{n-1,i}+d_kl_{nk}=d_kl_{k+1,k}l_{n-1 ,k}+d_{k+1}l_{n-1,k+1} \\ &\Leftrightarrow &d_0l_{k0}l_{n0}+\sum\limits_{i=1}^{k-1}d_il_{ki}l_{ni}-\left[ d_0l_{k+1,0}l_{n-1,0}+\sum\limits_{i=1}^{k-1}d_il_{k+1,i}l_{n-1,i}\right] +d_kl_{nk} \\ &=&d_kl_{k+1,k}l_{n-1,k}+d_{k+1}l_{n-1,k+1} \\ &\Leftrightarrow &d_0l_{k0}\left[ a_1l_{n-1,0}+d_1l_{n-1,1}\right] +\sum\limits_{i=1}^{k-1}d_il_{ki}l_{ni} \\ &&-\left[ d_0(a_1l_{k0}+d_1l_{k1})l_{n-1,0}+\sum% \limits_{i=1}^{k-1}d_il_{k+1,i}l_{n-1,i}\right] +d_kl_{nk} \\ &=&d_kl_{k+1,k}l_{n-1,k}+d_{k+1}l_{n-1,k+1} \\ &\Leftrightarrow &d_1l_{k0}l_{n-1,1}+\sum\limits_{i=1}^{k-1}d_il_{ki}l_{ni}-\left[ d_1l_{k1}l_{n-1,0}+\sum\limits_{i=1}^{k-1}d_il_{k+1,i}l_{n-1,i}\right] +d_kl_{nk} \\ &=&d_kl_{k+1,k}l_{n-1,k}+d_{k+1}l_{n-1,k+1} \\ \, &\Leftrightarrow &d_1l_{k0}l_{n-1,1}+\sum\limits_{i=1}^{k-1}d_il_{ki}\left[ l_{n-1,i-1}+\lambda _il_{n-1,i}+\frac{d_{i+1}}{d_i}l_{n-1,i+1}\right] \end{eqnarray*} \begin{eqnarray*} &&-\left[ d_1l_{k1}l_{n-1,0}+\sum\limits_{i=1}^{k-1}d_il_{n-1,i}\left[ l_{k,i-1}+\lambda _il_{ki}+\frac{d_{i+1}}{d_i}l_{k,i+1}\right] \right] +d_kl_{nk} \\ &=&d_kl_{k+1,k}l_{n-1,k}+d_{k+1}l_{n-1,k+1} \\ &\Leftrightarrow &d_1l_{k0}l_{n-1,1}+\sum\limits_{i=1}^{k-1}d_il_{ki}l_{n-1,i-1}+\sum% \limits_{i=1}^{k-1}d_{i+1}l_{ki}l_{n-1,i+1} \\ &&-\left[ d_1l_{k1}l_{n-1,0}+\sum\limits_{i=1}^{k-1}d_il_{k,i-1}l_{n-1,i}+\sum% \limits_{i=1}^{k-1}d_{i+1}l_{k,i+1}l_{n-1,i}\right] +d_kl_{nk} \\ &=&d_kl_{k+1,k}l_{n-1,k}+d_{k+1}l_{n-1,k+1} \\ &\Leftrightarrow &\quad \,d_1\left[ l_{k0}l_{n-1,1}+l_{k1}l_{n-1,0}-l_{k1}l_{n-1,0}-l_{k0}l_{n-1,1}\right] \\ &&+d_2\left[ l_{k2}l_{n-1,1}+l_{k1}l_{n-1,2}-l_{k1}l_{n-1,2}-l_{k2}l_{n-1,1}\right] \\ &&+d_3\left[ l_{k3}l_{n-1,2}+l_{k2}l_{n-1,3}-l_{k2}l_{n-1,3}-l_{k3}l_{n-1,2}\right] \\ &&...... \\ &&...... \\ &&+d_{k-1}\left[ l_{k,k-1}l_{n-1,k-2}+l_{k,k-2}l_{n-1,k-1}-l_{k,k-2}l_{n-1,k-1}-l_{k,k-1}l _{n-1,k-2}\right] \\ &&+d_k\left[ l_{k,k-1}l_{n-1,k}-l_{kk}l_{n-1,k-1}\right] +d_kl_{nk} \\ &=&d_kl_{k+1,k}l_{n-1,k}+d_{k+1}l_{n-1,k+1} \\ && \end{eqnarray*} \begin{eqnarray*} &\Leftrightarrow &d_kl_{nk}=d_kl_{n-1,k-1}+d_k\left[ l_{k+1,k}-l_{k,k-1}\right] l_{n-1,k}+d_{k+1}l_{n-1,k+1} \\ &\Leftrightarrow &l_{nk}=l_{n-1,k-1}+\lambda _kl_{n-1,k}+\mu _kl_{n-1,k+1} \end{eqnarray*} When $S_L$ has $\lambda _i=\lambda $ and $\mu _i=\mu $ for all $i\geq 1$ we can obtain an ordinary generating function for the sequence $1,a_1,a_2,... $\medskip\ \begin{theorem}\label{th2} Let $H$ be the Hankel matrix generated by the sequence $% 1,a_1,a_2,...$, and let $H=LDL^T$. Then $S_L$ has the form \[ S_L=\left[ \begin{array}{cccccc} a_1 & 1 & & & & . \\ d_1 & \lambda & 1 & & & . \\ & \mu & \lambda & 1 & & . \\ & & \mu & \lambda & 1 & . \\ & & & \mu & \lambda & . \\ . & . & . & . & . & . \end{array} \right] \,, \] if and only if the ordinary generating function $g(x)$ of the sequence $% 1,a_1,a_2,...$ is given by \[ g(x)=\frac 1{1-a_1x-d_1xf}\,, \] where \[ f=x(1+\lambda f+\mu f^2)\;,\quad f(0)=0. \] \end{theorem} \paragraph{Proof.} We note that $\mu \neq 0$ and \[ f=\frac{1-\lambda x-\sqrt{(1-\lambda x)^2-4\mu x}}{2\mu x}\,. \] Consider the lower triangular matrix $\widetilde{L}$ such that the generating function for the $k^{th}$ column is $g(x)[f(x)]^k,\quad k\geq 0.$ \begin{eqnarray*} g(x) &=&\frac 1{1-a_1x-d_1xf}\Leftrightarrow g(x)=1+a_1xg(x)+d_1xgf \\ &\Leftrightarrow &\widetilde{l}_{00}=1\quad \mbox{and}\quad \left[ x^n\right] g=a_1\left[ x^n\right] xg+d_1\left[ x^n\right] xgf \\ &\Leftrightarrow &\widetilde{l}_{00}=1\quad \mbox{and}\quad \widetilde{l}_{n0}=a_1% \widetilde{l}_{n-1,0}+d_1\widetilde{l}_{n-1,1}\quad for\quad n\geq 1. \end{eqnarray*} Also, for $k\geq 1$ , \begin{eqnarray*} f &=&x(1+\lambda f+\mu f^2)\Leftrightarrow gf^k=xgf^{k-1}+\lambda xgf^k+\mu xgf^{k+1} \\ &\Leftrightarrow &\left[ x^n\right] gf^k=\left[ x^n\right] xgf^{k-1}+\lambda \left[ x^n\right] xgf^k+\mu \left[ x^n\right] xgf^{k+1} \\ &\Leftrightarrow &\widetilde{l}_{nk}=\widetilde{l}_{n-1,k-1}+\lambda \widetilde{l}_{n-1,k}+\mu \widetilde{l}_{n-1,k+1}\,. \end{eqnarray*} Therefore $S_L$ has the given form if and only if $S_L=S_{\widetilde{L}% }\Leftrightarrow L=\widetilde{L}. $ We now turn to the exponential generating function case. We get an exponential generating function for the sequence $1,a_1,a_2,...$ when the sequences $\{\lambda _i\}_{i\geq 0}$ and $\{\frac{\mu _i}{i+1}\}_{i\geq 0}$ are arithmetic sequences.\medskip\ \begin{theorem}\label{th3} Let $H$ be the Hankel matrix generated by the sequence $% 1,a_1,a_2,...$, and let $H=LDL^T.$ Then $S_L$ has the form given in Theorem 1. If $\{\lambda _i\}_{i\geq 0}$, is an arithmetic sequence with common difference $\lambda $ and $\{\frac{\mu _i}{i+1}\}_{i\geq 0}$ an arithmetic sequence with common difference $\mu $ , then the exponential generating function $g(x)$ for the sequence $1,a_1,a_2,...$ is given by \[ \ln (g)=\int (a_1+d_1f)dx\;,\quad \quad g(0)=1, \] where $f$ is given by \[ f^{\prime }=1+\lambda f+\mu f^2\;,\quad \quad f(0)=0\,. \] \end{theorem} \paragraph{Proof.} Consider the lower triangular matrix $\widehat{L}$ with $\frac 1{k!}g(x)[f(x)]^k$ for the exponential generating function of the $k^{th}$ column, $k\geq 0.$ We note that $\widehat{L}$ is a Riordan matrix with exponential generating functions. \begin{eqnarray*} \ln (g) &=&\int (a_1+d_1f)dx\Rightarrow g^{\prime }=a_1g+d_1fg\Rightarrow \left[ \frac{x^n}{n!}\right] g^{\prime }=a_1\left[ \frac{x^n}{n!}\right] g+d_1\left[ \frac{x^n}{n!}\right] fg \\ &\Rightarrow &\widehat{l}_{n+1,0}=a_1\widehat{l}_{n0}+d_1\widehat{l}% _{n1}\Rightarrow \widehat{l}_{n0}=\lambda _0\widehat{l}_{n-1,0}+\mu _0% \widehat{l}_{n-1,1} \end{eqnarray*} For $k\geq 1$ , \begin{eqnarray*} \left( \frac{gf^k}{k!}\right) ^{\prime } &=&\frac{g^{\prime }f^k}{k!}+\frac{% gf^{k-1}f^{\prime }}{(k-1)!}=\frac{a_1gf^k}{k!}+\frac{d_1gf^{k+1}}{k!}+\frac{% gf^{k-1}+\lambda gf^k+\mu gf^{k+1}}{(k-1)!} \\ &=&(a_1+\lambda k)\frac{gf^k}{k!}+(d_1+\mu k)\frac{gf^{k+1}}{k!}+\frac{% gf^{k-1}}{(k-1)!} \\ &=&\frac{gf^{k-1}}{(k-1)!}+\lambda _k\frac{gf^k}{k!}+\frac{\mu _k}{k+1}\frac{% gf^{k+1}}{k!}\,. \end{eqnarray*} Therefore \begin{eqnarray*} \left[ \frac{x^n}{n!}\right] \left( \frac{gf^k}{k!}\right) ^{\prime } &=&\left[ \frac{x^n}{n!}\right] \left( \frac{gf^{k-1}}{(k-1)!}+\lambda _k% \frac{gf^k}{k!}+\mu _k\frac{gf^{k+1}}{(k+1)!}\right) \,. \\ && \end{eqnarray*} That is, \[ \widehat{l}_{n+1,k}=\widehat{l}_{n,k-1}+\lambda _k\widehat{l}_{nk}+\mu _k% \widehat{l}_{n,k+1}\,, \] \[ \widehat{l}_{nk}=\widehat{l}_{n-1,k-1}+\lambda _k\widehat{l}_{n-1,k}+\mu _k% \widehat{l}_{n-1,k+1}\,. \] Therefore $S_L$ has the given form if and only if $L=\widehat{L}.$ \quad \medskip\ \section{Further Examples} \paragraph{Example 3.} Derangements: $1,0,1,2,9,44,265,1854,14833,...$\\This is sequence \htmladdnormallink{A166}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000166} in [5]. $H=LDL^T$ and \[ S_L=\left[ \begin{array}{cccccc} 0 & 1 & & & & . \\ 1 & 2 & 1 & & & . \\ & 4 & 4 & 1 & & . \\ & & 9 & 6 & 1 & . \\ & & & 16 & 8 & . \\ . & . & . & . & . & . \end{array} \right] \,. \] This is the exponential case with $\lambda _k=2k$ and $\mu _k=(k+1)^2.$ Therefore $\lambda =2$ and $\mu =1.$ So $f^{\prime }=1+2f+f^2$ with $% f(0)=0. $ That gives $f=\frac x{1-x}$ and $\ln (g)=\int fdx$ , $g(0)=1.$ So \[ g(x)=\frac{e^{-x}}{1-x}\,. \] \paragraph{Example 4.} Here we start with a Stieltjes matrix having the form in Theorem 3. The associated sequence is 1,3,10,39,187,1128,8455, ... (sequence \htmladdnormallink{A54912}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=054912} in [5]). \[ S_L=\left[ \begin{array}{cccccc} 3 & 1 & & & & . \\ 1 & 6 & 1 & & & . \\ & 6 & 9 & 1 & & . \\ & & 15 & 12 & 1 & . \\ & & & 28 & 15 & . \\ . & . & . & . & . & . \end{array} \right] \,. \] Here $S_L$ has the form in Theorem 3 with $\lambda =3$ and $\mu =2.$ Therefore the exponential generating function for the sequence in the leftmost column of $L$ is given by $\ln (g)=\int (3+f)dx,\quad g(0)=1$ where $f^{\prime }=1+3f+2f^2,\quad f(0)=0.$ We get $f=\frac{e^x-1}{2-e^x}$ and \[ g(x)=\sqrt{\frac{e^{5x}}{2-e^x}}=1+3x+10\frac{x^2}{2!}+39\frac{x^3}{3 !}+187% \frac{x^4}{4!}+1128\frac{x^5}{5!}+8455\frac{x^6}{6!}+O(x^7) \] We can also use Theorem 1 to construct $L$ and $D.$ Recall that $d_{i+1}=\mu _id_i,$ and that $d_0=1.$\bigskip\ \section*{Acknowledgements} We thank the other members of the Howard University Combinatorics Group (Seyoum Getu, Louis Shapiro, Leon Woodson and Asamoah Nkwanta) for their helpful suggestions and encouragement. \section*{References} \begin{description} \item 1. L. Comtet. {\em Advanced Combinatorics}. D. Reidel Publishing Company, 1974. \item 2. S. Getu, L. W. Shapiro, W.-J. Woan, \& L. C. Woodson. The Riordan Group. {\em Discrete Applied Mathematics}, {\bf 34} (1991), 229-239. \item 3. S. Getu, L. W. Shapiro, W.-J. Woan, \& L. C. Woodson. How to Guess a Generating Function. {\em SIAM Journal on Discrete Mathematics}, {\bf 5} (1992), 497-499. \item 4. P. Peart, \& L. C. Woodson. Triple Factorization of some Riordan Matrices. {\em Fibonacci Quarterly}, {\bf 31} (1993), 121-128. \item 5. N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Published electronically at \htmladdnormallink{http://www.research.att.com/$\sim $njas/sequences/}{http://www.research.att.com/~njas/sequences/}. \item 6. L. C. Woodson. {\em Infinite Matrices, $C_n$-Functions and Umbral Calculus}. Ph.D. Thesis. Howard University, 1991. \end{description} \vspace*{+.5in} \centerline{\rule{5.4in}{.01in}} \vspace*{+.1in} \noindent {\small (Concerned with sequences \htmladdnormallink{A108}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000108}, \htmladdnormallink{A166}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000166}, \htmladdnormallink{A957}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000957}, \htmladdnormallink{A984}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000984}, \htmladdnormallink{A1003}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=001003}, \htmladdnormallink{A1850}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=001850}, \htmladdnormallink{A2426}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=002426}, \htmladdnormallink{A5773}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=005773}, \htmladdnormallink{A6318}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=006318}, \htmladdnormallink{A54912}{http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=054912}.) } \centerline{\rule{5.4in}{.01in}} \vspace*{+.1in} \noindent Received May 15, 1999; published in Journal of Integer Sequences June 4, 2000. \centerline{\rule{5.4in}{.01in}} \vspace*{+.1in} \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.research.att.com/~njas/sequences/JIS/}. \centerline{\rule{5.4in}{.01in}} \end{document} .