\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{amscd} \usepackage{graphicx} \usepackage{mathtools} \usepackage{thmtools} \usepackage{shuffle} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \usepackage{cleveref} \crefformat{equation}{Eq.~(#2#1#3)} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics} \usepackage{latexsym} \usepackage{epsf} \usepackage{breakurl} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{https://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Planted Brussels Sprouts (after Ji-Propp) } \vskip 1cm \large Nathan Williams \\ Department of Mathematical Sciences \\ University of Texas at Dallas \\ Richardson, Texas 75080 \\ USA\\ \href{mailto:nathan.f.williams@gmail.com}{\tt nathan.f.williams@gmail.com} \\ \end{center} \vskip .2 in \begin{abstract} We give an elementary argument to show that games of Planted Brussels Sprouts are in bijection with factorizations of the long cycle. This simplifies recent work of Ji and Propp. We also address a centrally symmetric version of the game. \end{abstract} \section{Planted Brussels Sprouts and factorizations of the long cycle} \subsection{Planted Brussels Sprouts} Ji and Propp recently analyzed the number of ways to ``play'' a two-player game called {\it Planted Brussels Sprouts}~\cite{JiPropp}. The game takes place in a disk whose boundary is regularly marked with $n{+}1 \geq 1$ distinct points, which we will label clockwise by distinct numbers $\mathbf{\ell}=(\ell_1,\ldots,\ell_{n+1})$. Players take turns drawing arcs in the disk that connect two labelled points without passing through any other arcs. These two points are then stripped of their labels, a short line segment is drawn transversely to the new arc, and the stripped labels are assigned to the end points of this short segment so that the new labels appear clockwise of the old labels. See~\Cref{fig:game} for an example. It is clear that a game of Planted Brussels Sprouts is uniquely determined by its sequence of stripped labels $(i_1 j_1) \cdots (i_{n} j_{n})$ (where $i_k