\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \newtheorem{theoremA}{Theorem} \renewcommand*{\thetheoremA}{\Alph{theoremA}} \begin{center} \vskip 1cm{\LARGE\bf Greatest Common Divisors of Shifted \\ \vskip .1in Fibonacci Sequences Revisited } \vskip 1cm \large Annalena Rahn and Martin Kreh\\ Institute of Mathematics and Applied Computer Science \\ University of Hildesheim \\ Samelsonplatz 1 \\ 31141 Hildesheim \\ Germany\\ \href{mailto:rahnan@uni-hildesheim.de}{\tt rahnan@uni-hildesheim.de} \\ \href{mailto:kreh@imai.uni-hildesheim.de}{\tt kreh@imai.uni-hildesheim.de} \\ \end{center} \vskip .2 in \newcommand{\NN}{\mathbb{N}} \newcommand{\abs}[1]{\left\vert #1 \right\vert} \begin{abstract} In 2011, Chen computed the greatest common divisors of consecutive shifted Fibonacci numbers $F_n+a$ and $F_{n+1}+a$ for $a \in \lbrace \pm 1, \pm 2 \rbrace$. He also showed that $\gcd(F_n+a,F_{n+1}+a)$ is bounded if $a \neq \pm 1$. This was later generalized by Spilker, who also showed that $\gcd(F_n+a,F_{n+1}+a)$ is periodic if $a \neq \pm 1$. In this article, we compute the greatest common divisor for $a = \pm 3$ and we show how the results given in this article compare to bounds derived by Chen and periods derived by Spilker. We further give a necessary criterion for an integer $d$ to occur as such a greatest common divisor. \end{abstract} \section{Introduction and results} Let $(F_n)_{n \geq 1}$ be the Fibonacci sequence defined by the recursion \begin{equation} F_n = F_{n-1} + F_{n-2}, \quad F_1=F_2=1. \end{equation} Using this recursion, $F_n$ can be extended to integer indices, where we have the relation $F_{-n}=(-1)^{n+1} F_n$. In this article, we want to investigate greatest common divisors of the form $\gcd(F_n+a,F_{n+1}+a)$. It is well known, that $\gcd(F_n+a,F_{n+1}+a)=1$ for all $n$ if $a=0$, i.e., consecutive Fibonacci numbers are coprime. In 1971, Dudley and Tucker \cite{dudtuck} showed that $\gcd(F_n+a,F_{n+1}+a)$ is unbounded for $a = \pm 1$ by showing that \begin{align} \gcd(F_{4n+1}+1,F_{4n+2}+1) &= L_{2n}, \\ \gcd(F_{4n+1}-1,F_{4n+2}-1) &= F_{2n}, \\ \gcd(F_{4n+3}-1,F_{4n+4}-1) &= L_{2n+1}. \end{align} Here $(L_n)_{n \geq 1}$ denotes the Lucas sequence defined by $L_n=L_{n-1}+L_{n-2}, L_1=1, L_2=3$. In 2011, Chen \cite{chen} determined $\gcd(F_n+a,F_{n+1}+a)$ for $a \in \lbrace \pm 1, \pm 2 \rbrace$ and proved the following bound. \begin{theoremA}[\cite{chen}] Let $n, a \in \mathbb{Z}$. Then \begin{itemize} \item $\gcd(F_{2n-1}+a,F_{2n}+a) \leq \abs{a^2-1}$ if $a \neq \pm 1$. \item $\gcd(F_{2n}+a,F_{2n+1}+a) \leq a^2+1$. \end{itemize} \end{theoremA} Spilker \cite{spilker} generalized some of Chen's results. Among other, he showed the following theorems (in even greater generality than mentioned here). \begin{theoremA}[\cite{spilker}] \label{sp1} For all $a \in \mathbb{Z}$, $\gcd(F_n+a,F_{n+1}+a)$ divides $a^2+(-1)^n$. If $a \neq \pm 1$, the function $n \mapsto \gcd(F_n+a,F_{n+1}+a)$ is simply periodic and a period $p \leq (a^4-1)^2$ can be chosen by \begin{equation} F_p \equiv 0 \pmod {a^4-1}, \quad F_{p+1} \equiv 1 \pmod {a^4-1}. \end{equation} \end{theoremA} \begin{theoremA}[\cite{spilker}] \label{sp2} Let $a \in \mathbb{Z}$ with $\abs{a} > 1, k \in \NN$ and $i \in \lbrace 0,1 \rbrace$. \begin{enumerate} \item If $F_{2k-i} \equiv \alpha_i \ (\mathrm{mod}\ a^2+1)$ with $0 \leq \alpha_i < a^2+1$, then \begin{align} \gcd(F_{4k}+a,F_{4k+1}+a) &= \gcd(\alpha_0+a \alpha_1,a \alpha_0 - \alpha_1,a^2+1), \\ \gcd(F_{4k-2}+a,F_{4k-1}+a) &= \gcd(\alpha_0+(a-1) \alpha_1,a \alpha_0 - (a+1) \alpha_1,a^2+1). \end{align} \item If $F_{2k-i} \equiv \beta_i \ (\mathrm{mod}\ a^2-1)$ with $0 \leq \alpha_i < a^2-1$, then \begin{align} \gcd(F_{4k-1}+a,F_{4k}+a) &= \gcd((a+1)\beta_1,(a-1)\beta_0-a\beta_1,a^2-1), \\ \gcd(F_{4k-3}+a,F_{4k-2}+a) &= \gcd(\beta_0-(a+2)\beta_1,(a-1)\beta_0-(a-1)\beta_1,a^2-1). \end{align} \end{enumerate} \end{theoremA} Spilker also answered the question in which cases the upper bound of Chen is being attained. To state this, define the \emph{entry point} of $m \in \NN$ as $e(m) := \min \lbrace i \in \NN : m | F_i \rbrace$ (the existence of $e(m)$ follows from \cite[Theorem 1]{wall}). \begin{theoremA}[\cite{spilker}] \label{sp3} Let $\abs{a} >1$. The function $n \mapsto \gcd(F_n+a,F_{n+1}+a)$ has the upper bound $m = a^2+1$ as a value if and only if $e(m)$ is odd and $a \equiv \pm F_{e(m)+1} \ (\mathrm{mod}\ m)$. The function $n \mapsto \gcd(F_n+a,F_{n+1}+a)$ has the value $m = a^2-1$ on the odd integers if and only if $a=2$ or $e(m)$ is even and $a \equiv -F_{e(m)+1} \ (\mathrm{mod}\ m)$. \end{theoremA} In this article, we will use Chen's method to determine $\gcd(F_n+a,F_{n+1}+a)$ for $a = \pm 3$. More precisely, we will show the following theorems. \begin{theorem} \label{thm1} We have \begin{enumerate} \item $\gcd(F_{4n-1}+3,F_{4n}+3) = \begin{cases} 8, & \text{if } n \equiv 2 \ (\mathrm{mod}\ 3); \\ 1, &\text{otherwise.} \end{cases}$ \item $\gcd(F_{4n}+3,F_{4n+1}+3) = \begin{cases} 2, & \text{if } n \equiv 1 \ (\mathrm{mod}\ 3) \text{ and } n \not\equiv 4 \ (\mathrm{mod}\ 5); \\ 5, & \text{if } n \not\equiv 1 \ (\mathrm{mod}\ 3) \text{ and } n \equiv 4 \ (\mathrm{mod}\ 5); \\ 10, & \text{if } n \equiv 1 \ (\mathrm{mod}\ 3) \text{ and } n \equiv 4 \ (\mathrm{mod}\ 5); \\ 1, &\text{otherwise.} \end{cases}$ \item $\gcd(F_{4n+1}+3,F_{4n+2}+3) = \begin{cases} 4, & \text{if } n \equiv 0 \ (\mathrm{mod}\ 3); \\ 1, &\text{otherwise.} \end{cases}$ \item $\gcd(F_{4n+2}+3,F_{4n+3}+3) = \begin{cases} 2, & \text{if } n \equiv 2 \ (\mathrm{mod}\ 3); \\ 1, &\text{otherwise.} \end{cases}$ \end{enumerate} \end{theorem} \begin{theorem} \label{thm2} We have \begin{enumerate} \item $\gcd(F_{4n-1}-3,F_{4n}-3) = \begin{cases} 2, & \text{if } n \equiv 2 \ (\mathrm{mod}\ 3); \\ 1, &\text{otherwise.} \end{cases}$ \item $\gcd(F_{4n}-3,F_{4n+1}-3) = \begin{cases} 2, & \text{if } n \equiv 1 \ (\mathrm{mod}\ 3); \\ 1, &\text{otherwise.} \end{cases}$ \item $\gcd(F_{4n+1}-3,F_{4n+2}-3) = \begin{cases} 2, & \text{if } n \equiv 0 \ (\mathrm{mod}\ 3); \\ 1, &\text{otherwise.} \end{cases}$ \item $\gcd(F_{4n+2}-3,F_{4n+3}-3) = \begin{cases} 2, & \text{if } n \equiv 2 \ (\mathrm{mod}\ 3) \text{ and } n \not\equiv 1 \ (\mathrm{mod}\ 5); \\ 5, & \text{if } n \not\equiv 2 \ (\mathrm{mod}\ 3) \text{ and } n \equiv 1 \ (\mathrm{mod}\ 5); \\ 10, & \text{if } n \equiv 2 \ (\mathrm{mod}\ 3) \text{ and } n \equiv 1 \ (\mathrm{mod}\ 5); \\ 1, &\text{otherwise.} \end{cases}$ \end{enumerate} \end{theorem} We will further examine the sets \begin{equation} G_0(a) := \lbrace \gcd(F_{2n}+a,F_{2n+1}+a): n \in \mathbb{Z} \rbrace \text{ and } G_1(a) := \lbrace \gcd(F_{2n+1}+a,F_{2n+2}+a): n \in \mathbb{Z} \rbrace. \end{equation} Let $D(n)$ denote the set of divisors of $n$. We already know from Theorem \ref{sp1} that $G_0(a) \subset D(a^2+1)$ and $G_1(a) \subset D(a^2-1)$ Theorem \ref{sp3} characterizes the cases in which $a^2+1 \in G_0(a)$ and $a^2-1 \in G_1(a)$. We will show the following extension. \begin{theorem} \leavevmode \label{thm3} \begin{enumerate} \item We have $1 \in G_0(a)$ and $\lbrace 1,a+1 \rbrace \subset G_1(a)$ for all $a$. \item We have $2 \in G_0(a)$ if and only if $a \equiv 1 \ (\mathrm{mod}\ 2)$ and $2 \in G_1(a)$ if and only if $a \equiv 1 \ (\mathrm{mod}\ 4)$. \item Let $d \neq 1,2$ be a divisor of $a^2+1$. If $d \in G_0(a)$, then $e(d)$ is odd and $a \equiv \pm F_{e(d)+1} \ (\mathrm{mod}\ d)$. \item Let $d \neq 1,2$ be a divisor of $a^2-1$ such that $a \not\equiv \pm 1 \ (\mathrm{mod}\ d)$. If $d \in G_1(a)$, then $e(d)$ is even and $a \equiv -F_{e(d)+1} \ (\mathrm{mod}\ d)$. \end{enumerate} \end{theorem} Before proving Theorems \ref{thm1}, \ref{thm2}, and \ref{thm3}, we will start with some lemmas in the next section. In Section \ref{secweiter}, we will compare our results to those of Spilker and raise some new questions. \section{Preliminaries} We will need a few results about divisibility and greatest common divisors of Fibonacci numbers. We will state common facts without proof and prove some special identities. In the following we always assume that $n$ is a (not necessarily positive) integer. \begin{lemma} \label{lemggt} For all $a,b,c \in \mathbb{Z}$ we have $\gcd(a,bc) = \gcd(a,\gcd(a,b)c)$. \end{lemma} \begin{lemma}[\cite{koshy}] \label{divrules} We have the following identities and rules about divisibility and greatest common divisors of Fibonacci numbers. \begin{itemize} \item For all $m,n \in \NN$ we have $F_{m+n} = F_{m+1}F_n + F_{m}F_{n-1}$. \item For all $n \in \NN$ we have $F_{n+1}F_{n-1} = F^2_{n} + (-1)^{n}$. \item $F_n \equiv 0 \ (\mathrm{mod}\ 2) \Leftrightarrow n \equiv 0 \ (\mathrm{mod}\ 3)$. \item $F_n \equiv 0 \ (\mathrm{mod}\ 4) \Leftrightarrow n \equiv 0 \ (\mathrm{mod}\ 6)$. \item $F_n \equiv 0 \ (\mathrm{mod}\ 5) \Leftrightarrow n \equiv 0 \ (\mathrm{mod}\ 5)$. \item $F_n \equiv 0 \ (\mathrm{mod}\ 8) \Leftrightarrow n \equiv 0 \ (\mathrm{mod}\ 6)$. \item For all $n \in \NN$ we have $\gcd(F_{n},F_{n+1})=1$. \item For all $m,n \in \NN$ we have $\gcd(F_m,F_n) = F_{\gcd(m,n)}$. \end{itemize} \end{lemma} \begin{lemma} \label{lem2} For all $n \in \mathbb{Z}$ we have \begin{equation} \gcd(F_{2n},4) = \begin{cases} 4, & \text{if } n \equiv 0 \pmod 3; \\ 1, &\text{otherwise.} \end{cases} \end{equation} \end{lemma} \begin{proof} Let $n=3m+k$ with $k \in \lbrace -1,0,1 \rbrace$. Then we get with Lemma \ref{divrules} \begin{equation} \gcd(F_{2n},4) = \gcd(F_{6m+2k},4) = \begin{cases} 4, & \text{if } k=0; \\ 1, &\text{otherwise.} \end{cases} \end{equation} \end{proof} \begin{lemma} \label{lem4} For all $n \in \mathbb{Z}$ we have \begin{equation} \gcd(10,F_{2n-1}-2F_{2n}) = \begin{cases} 2, & \text{if } n \equiv 2 \pmod 3; \\ 1, &\text{otherwise.} \end{cases} \end{equation} \end{lemma} \begin{proof} Analogously to above, $F_{2n-1}-2F_{2n}$ is divisible by $2$ if and only if $2n-1 \equiv 0 \ (\mathrm{mod}\ 3)$, i.e., if $n \equiv 2 \ (\mathrm{mod}\ 3)$. Further we have \begin{equation} F_{2n-1}-2F_{2n} = -(3F_{2n-2}+F_{2n-3}) = -(4F_{2n-3}+3F_{2n-4}) \end{equation} and for any residue class of $n$ modulo $5$ we can pick one of the three terms above such that one summand is divisible by $5$ while the other is not (for example, if $n \equiv 4 \ (\mathrm{mod}\ 5)$ then $F_{2n-3}$ is divisible by $5$ and $3F_{2n-2}$ is not divisible by $5$ due to Lemma \ref{divrules}). Thus $F_{2n-1}-2F_{2n}$ is not divisible by $5$. \end{proof} \begin{lemma} \label{lem3} For all $n \in \mathbb{Z}$ we have \begin{equation} \gcd(10,F_{2n-1}-3F_{2n}) = \begin{cases} 2, & \text{if } n \equiv 1 \pmod 3 \text{ and } n \not\equiv 4 \pmod 5; \\ 5, & \text{if } n \not\equiv 1 \pmod 3 \text{ and } n \equiv 4 \pmod 5; \\ 10, & \text{if } n \equiv 1 \pmod 3 \text{ and } n \equiv 4 \pmod 5; \\ 1, &\text{otherwise.} \end{cases} \end{equation} \end{lemma} \begin{proof} It suffices to show that $2|F_{2n-1}-3F_{2n}$ if and only if $n \equiv 1 \ (\mathrm{mod}\ 3)$ and $5|F_{2n-1}-3F_{2n}$ if and only if $n \equiv 4 \ (\mathrm{mod}\ 5)$. With Lemma \ref{divrules}, $F_{2n-1}-3F_{2n} = -F_{2n-2}-2F_{2n}$ is divisible by $2$ if and only if $2n-2 \equiv 0 \ (\mathrm{mod}\ 3)$, i.e., if $n \equiv 1 \ (\mathrm{mod}\ 3)$ and $F_{2n-1}-3F_{2n} = -5F_{2n}+F_{2n+2}$ is divisible by $5$ if and only if $2n+2 \equiv 0 \ (\mathrm{mod}\ 5)$, i.e., if $n \equiv 4 \ (\mathrm{mod}\ 5)$. \end{proof} \begin{lemma} \label{lem5} For all $n \in \mathbb{Z}$ we have \begin{equation} \gcd(8,4F_{2n} - F_{2n-1}) = \begin{cases} 2, & \text{if } n \equiv 2 \pmod 3; \\ 1, &\text{otherwise.} \end{cases} \end{equation} \end{lemma} \begin{proof} Let $n=3m+k$ with $k \in \lbrace -1,0,1 \rbrace$. Then we get with Lemma \ref{divrules} \begin{equation} F_{2n-1} = F_{6m+2k-1} \equiv \begin{cases} 2 \pmod 4, & \text{if } k=-1; \\ 1 \pmod 2, &\text{otherwise,} \end{cases} \end{equation} and this shows the lemma. \end{proof} \begin{lemma} \label{lem6} For all $n \in \mathbb{Z}$ we have \begin{equation} \gcd(10,F_{2n-1}+3F_{2n}) = \begin{cases} 2, & \text{if } n \equiv 1 \pmod 3; \\ 1, &\text{otherwise.} \end{cases} \end{equation} \end{lemma} \begin{proof} Since $F_{2n-1} + 3F_{2n} = F_{-2n+1} - 3F_{-2n} = F_{-2n-1} - 2F_{-2n}$, this follows from Lemma \ref{lem4}. \end{proof} \begin{lemma} \label{lem7} For all $n \in \mathbb{Z}$ we have \begin{equation} \gcd(10,F_{2n+1}+3F_{2n}) = \begin{cases} 2, & \text{if } n \equiv 2 \pmod 3 \text{ and } n \not\equiv 1 \pmod 5; \\ 5, & \text{if } n \not\equiv 2 \pmod 3 \text{ and } n \equiv 1 \pmod 5; \\ 10, & \text{if } n \equiv 2 \pmod 3 \text{ and } n \equiv 1 \pmod 5; \\ 1, &\text{otherwise.} \end{cases} \end{equation} \end{lemma} \begin{proof} Since $F_{2n+1}+3F_{2n} = F_{-2n-1} - 3F_{-2n}$, this follows from Lemma \ref{lem3}. \end{proof} The following lemma due to Chen is the main part for computing the greatest common divisors. \begin{lemma}[\cite{chen}] \label{chen} For all $m,k,a \in \mathbb{Z}$ we have \begin{equation} \gcd(F_m + a, F_{m+1} + a) = \gcd(F_{m-2k}+aF_{2k-1},F_{m-(2k+1)}-aF_{2k}). \end{equation} \end{lemma} \section{Proof of Theorem \ref{thm1} and Theorem \ref{thm2}} In this section we will give the proof for Theorems \ref{thm1} and \ref{thm2}. \begin{proof}[Proof of Theorem \ref{thm1}] \leavevmode \begin{enumerate} \item We use Lemma \ref{chen} with $m=4n-1,k=n,a=3$ to get \begin{align} \gcd(F_{4n-1}+3,F_{4n}+3) &= \gcd(4F_{2n-1},F_{2n-2}-3F_{2n}) = \gcd(4F_{2n-1},F_{2n+2}) \\ &= \gcd(4F_{2n-1}+4F_{2n+2},F_{2n+2}) = \gcd(8F_{2n+1},F_{2n+2}). \end{align} Since $\gcd(F_{2n+1},F_{2n+2})=1$, we get with Lemma \ref{divrules} \begin{equation} \gcd(F_{4n-1}+3,F_{4n}+3) = \gcd(8,F_{2n+2}) = \gcd(F_6,F_{2n+2}) = F_{\gcd(6,2n+2)}, \end{equation} and since \begin{equation} \gcd(6,2n+2) = \begin{cases} 6, & \text{if } n \equiv 2 \pmod 3; \\ 2, &\text{otherwise,} \end{cases} \end{equation} this proves the first case. \item We use Lemma \ref{chen} with $m=4n,k=n,a=3$ to get \begin{align} \gcd(F_{4n}+3,F_{4n+1}+3) &= \gcd(F_{2n}+3F_{2n-1},F_{2n-1}-3F_{2n}) \\ &= \gcd(F_{2n}+3F_{2n-1}-3(F_{2n-1}-3F_{2n}),F_{2n-1}-3F_{2n}) \\ &= \gcd(10F_{2n},F_{2n-1}-3F_{2n}). \end{align} With Lemma \ref{lemggt} we get \begin{align} \gcd(F_{4n}+3,F_{4n+1}+3) &= \gcd(10 \cdot \gcd(F_{2n},F_{2n-1}-3F_{2n}),F_{2n-1}-3F_{2n}) \\ &= \gcd(10,F_{2n-1}-3F_{2n}), \end{align} thus the claim follows with Lemma \ref{lem3}. \item We use Lemma \ref{chen} with $m=4n+1,k=n,a=3$ and Lemma \ref{lemggt} to get \begin{align} \gcd(F_{4n+1}+3,F_{4n+2}+3) &= \gcd(F_{2n+1}+3F_{2n-1},2F_{2n}) \\ &= \gcd(F_{2n}+4F_{2n-1},2 \cdot \gcd(F_{2n}+4F_{2n-1},F_{2n})) \\ &= \gcd(F_{2n}+4F_{2n-1},2 \cdot \gcd(4,F_{2n})). \end{align} With Lemma \ref{lem2} and Lemma \ref{divrules} we get \begin{align} &\gcd(F_{2n}+4F_{2n-1},2 \cdot \gcd(4,F_{2n})) \\ &= \begin{cases} \gcd(F_{2n}+4F_{2n-1},8) = \gcd(4F_{2n-1},8) = 4, & \text{if } n \equiv 0 \pmod 3; \\ \gcd(F_{2n}+4F_{2n-1},2) = \gcd(F_{2n},2) = 1, &\text{otherwise.} \end{cases} \end{align} \item We use Lemma \ref{chen} with $m=4n+2,k=n,a=3$ to get \begin{align} \gcd(F_{4n+2}+3,F_{4n+3}+3) &= \gcd(F_{2n+2}+3F_{2n-1},F_{2n+1}-3F_{2n}) \\ &= \gcd(2F_{2n}+4F_{2n-1},F_{2n-1}-2F_{2n}) \\ &= \gcd(10F_{2n},F_{2n-1}-2F_{2n}). \end{align} With Lemma \ref{lemggt} we get \begin{align} \gcd(F_{4n+2}+3,F_{4n+3}+3) &= \gcd(10 \cdot \gcd(F_{2n},F_{2n-1}-2F_{2n}),F_{2n-1}-2F_{2n}) \\ &= \gcd(10,F_{2n-1}-2F_{2n}), \end{align} hence the statement follows with Lemma \ref{lem4}. \end{enumerate} \end{proof} \begin{proof}[Proof of Theorem \ref{thm2}] \leavevmode \begin{enumerate} \item We use Lemma \ref{chen} with $m=4n-1,k=n,a=-3$ to get \begin{align} \gcd(F_{4n-1}-3,F_{4n}-3) &= \gcd(2F_{2n-1},F_{2n-2}+3F_{2n}) \\ &= \gcd(2F_{2n-1},4F_{2n}-F_{2n-1}) \\ &= \gcd(8F_{2n},4F_{2n}-F_{2n-1}). \end{align} Using Lemma \ref{lemggt} we get \begin{align} \gcd(F_{4n-1}-3,F_{4n}-3) &= \gcd(8 \cdot \gcd(F_{2n},4F_{2n}-F_{2n-1}),4F_{2n}-F_{2n-1}) \\ &= \gcd(8,4F_{2n}-F_{2n-1}), \end{align} thus the claim folows with Lemma \ref{lem5}. \item We use Lemma \ref{chen} with $m=4n,k=n,a=-3$ to get \begin{equation} \gcd(F_{4n}-3,F_{4n+1}-3) = \gcd(F_{2n}-3F_{2n-1},F_{2n-1}+3F_{2n}) = \gcd(10F_{2n},F_{2n-1}+3F_{2n}). \end{equation} Using Lemma \ref{lemggt} gives \begin{align} \gcd(F_{4n}-3,F_{4n+1}-3) &= \gcd(10 \cdot \gcd(F_{2n},F_{2n-1}+3F_{2n}),F_{2n-1}+3F_{2n}) \\ &= \gcd(10,F_{2n-1}+3F_{2n}), \end{align} and Lemma \ref{lem6} gives the result. \item We use Lemma \ref{chen} with $m=4n+1,k=n,a=-3$ to get \begin{align} \gcd(F_{4n+1}-3,F_{4n+2}-3) &= \gcd(F_{2n+1}-3F_{2n-1},4F_{2n}) \\ &= \gcd(F_{2n-3},8F_{2n-1}-4F_{2n-3}) = \gcd(F_{2n-3},8F_{2n-1}) \\ &= \gcd(F_{2n-3},8) = \gcd(F_{2n-3},F_6). \end{align} Using Lemma \ref{divrules} gives $\gcd(F_{4n+1}-3,F_{4n+2}-3) = F_{\gcd(6,2n-3)}$, and since \begin{equation} \gcd(6,2n-3) = \begin{cases} 3, & \text{if } n \equiv 0 \pmod 3; \\ 1, &\text{otherwise,} \end{cases} \end{equation} we get \begin{equation} \gcd(F_{4n+1}-3,F_{4n+2}-3) = F_{\gcd(2n-3,6)} = \begin{cases} F_3 = 2, & \text{if } n \equiv 0 \pmod 3; \\ F_1 = 1, &\text{otherwise.} \end{cases} \end{equation} \item We use Lemma \ref{chen} with $m=4n+2,k=n,a=-3$ to get \begin{align} \gcd(F_{4n+2}-3,F_{4n+3}-3) &= \gcd(F_{2n+2}-3F_{2n-1},F_{2n+1}+3F_{2n}) \\ &= \gcd(4F_{2n}-2F_{2n+1},F_{2n+1}+3F_{2n}) \\ &= \gcd(10F_{2n},F_{2n+1}+3F_{2n}). \end{align} Using Lemma \ref{lemggt}, we get $\gcd(F_{4n+2}-3,F_{4n+3}-3) = \gcd(10,F_{2n+1}+3F_{2n})$, hence the statement follows with Lemma \ref{lem7}. \end{enumerate} \end{proof} \section{Proof of Theorem \ref{thm3}} To prove Theorem \ref{thm3}, we first note that \begin{align} \gcd(F_0+a,F_1+a) &= \gcd(a,a+1) = 1, \\ \gcd(F_1+a,F_2+a) &= \gcd(a+1,a+1) = a+1, \\ \gcd(F_3+a,F_4+a) &= \gcd(a+2,a+3) = 1. \end{align} This proves the first statement. For the second statement, note that $a$ has to be odd, since otherwise $2 \nmid a^2 \pm 1$. So suppose that $a$ is odd. Then we have \begin{equation} \gcd(F_4+a,F_5+a) = \gcd(a+3,a+5) = 2, \end{equation} hence $2 \in G_0(a)$. We turn our attention to $G_1(a)$. First let $a \equiv 1 \ (\mathrm{mod}\ 4)$. We have $\gcd(F_7+a,F_8+a) = \gcd(F_7+a,F_6) | 8$ and $F_7+a \equiv 2 \ (\mathrm{mod}\ 4), F_8+a \equiv 2 \ (\mathrm{mod}\ 4)$, hence \begin{equation} 2 = \gcd(F_7+a,F_8+a) \in G_1(a). \end{equation} Assume now that $a \equiv 3 \ (\mathrm{mod}\ 4)$. We will use the formula of the greatest common divisor given in Theorem \ref{sp2}. Let \begin{equation} A_1 := (a+1) \beta_1, \quad B_1 := (a-1)\beta_0 - a \beta_1, \quad A_2 := \beta_0 - (a+2) \beta_1, \quad B_2 := (a-1) \beta_0 - (a-1) \beta_1, \end{equation} where $\beta_0, \beta_1$ are defined as in Theorem \ref{sp2}. Since $a^2-1 \equiv 0 \ (\mathrm{mod}\ 4)$, we can only have $2 \in G_1(a)$ if there is an $i \in \lbrace 1,2 \rbrace$ such that both $A_i$ and $B_i$ are even and further $A_i \equiv 2 \ (\mathrm{mod}\ 4)$ or $B_i \equiv 2 \ (\mathrm{mod}\ 4)$. \begin{itemize} \item Then we have $A_1 \equiv 0 \ (\mathrm{mod}\ 4)$ in any case. \item We have $B_1 \equiv 2 \ (\mathrm{mod}\ 4)$ if and only if $2 \beta_0+\beta_1 \equiv 2 \ (\mathrm{mod}\ 4)$. Since $\beta_i \equiv F_{2k-i} \ (\mathrm{mod}\ a^2-1)$, this holds if and only if $2F_{2k}+F_{2k-1} \equiv 2 \ (\mathrm{mod}\ 4)$, i.e., if and only if $F_{2k+2} \equiv 2 \ (\mathrm{mod}\ 4)$. From Lemma \ref{divrules}, this holds if and only if $2k+2 \equiv 0 \ (\mathrm{mod}\ 3)$ and $2k+2 \not\equiv 0 \ (\mathrm{mod}\ 6)$, which is impossible. \item We have $A_2 \equiv 2 \ (\mathrm{mod}\ 4)$ if and only if $\beta_0-\beta_1 \equiv 2 \ (\mathrm{mod}\ 4)$. This is the case precisely when $F_{2k}-F_{2k-1} = F_{2k-2} \equiv 2 \ (\mathrm{mod}\ 4)$. From Lemma \ref{divrules}, this holds if and only if $2k-2 \equiv 0 \ (\mathrm{mod}\ 3)$ and $2k-2 \not\equiv 0 \ (\mathrm{mod}\ 6)$, which is impossible. \item Finally, we have $B_2 \equiv 2 \ (\mathrm{mod}\ 4)$ if and only if $\beta_0-\beta_1 \equiv 1 \ (\mathrm{mod}\ 2)$, in which case we also have $A_2 \equiv 1 \ (\mathrm{mod}\ 2)$. \end{itemize} Hence $2 \notin G_1(a)$ if $a \equiv 3 \ (\mathrm{mod}\ 4)$. For the proof of the fourth statement, we mimic Spilker's proof of Theorem \ref{sp3}. We use the identity $F_{m+n} = F_{m+1}F_n + F_{m}F_{n-1}$ from Lemma \ref{divrules} to find, that the integers $F_1,F_2,\ldots$ are modulo $d$ equivalent to \begin{align} &F_1,& &F_2,& &\ldots,& &F_{e(d)-1},& &0,& \\ &F_{e(d)+1} F_1,& &F_{e(d)+1} F_2,& &\ldots,& &F_{e(d)+1} F_{e(d)-1},& &0,& \\ &F^2_{e(d)+1} F_1,& &F^2_{e(d)+1} F_2,& &\ldots,& &F^2_{e(d)+1} F_{e(d)-1},& &0,& \ldots \end{align} where $F_n^k := (F_n)^k$. Hence \begin{equation} \label{eqsp1} F_{ke(d)} \equiv 0 \pmod d \text{ and } F_{ke(d)+1} \equiv F^k_{e(d)+1} \pmod d \text{ for all } k \in \mathbb{N}. \end{equation} From Lemma \ref{divrules}, we get \begin{align} F_{e(d)+1} &= F_{e(d)} + F_{e(d)-1} \equiv F_{e(d)-1} \pmod d, \\ F_{e(d)+1}F_{e(d)-1} &= F^2_{e(d)} + (-1)^{e(d)} \equiv (-1)^{e(d)} \pmod d, \end{align} hence we further have \begin{equation} \label{eqsp2} F^2_{e(d)+1} \equiv (-1)^{e(d)} \pmod d. \end{equation} We begin with the set $G_0(a)$. Suppose that $d \in G_0(a)$, i.e., \begin{equation} d = \gcd(F_{n_0}+a,F_{n_0+1}+a) = \gcd(F_{n_0}+a,F_{n_0-1}) \end{equation} for some even integer $n_0$. Then $F_{n_0}+a \equiv 0 \ (\mathrm{mod}\ d)$ and $F_{n_0-1} \equiv 0 \ (\mathrm{mod}\ d)$. From \cite[Theorem 3]{wall}, $n_0-1$ is a multiple of $e(d)$, i.e., $n_0 = ke(d)+1$ for some $k \in \mathbb{Z}$. Since $n_0$ is even, $k$ and $e(d)$ are odd, thus \eqref{eqsp1} and \eqref{eqsp2} give \begin{equation} F_{n_0} = F_{ke(d)+1} \equiv F^k_{e(d)+1} \equiv (-1)^{\frac{k-1}{2}} F_{e(d)+1} \pmod d, \end{equation} hence $a \equiv \pm F_{e(d)+1} \ (\mathrm{mod}\ d)$, and this proves the statement for $G_0(a)$. The statement for the set $G_1(a)$ can be proved almost analogously. Since here $n_0$ is odd, $ke(d)$ is even. If $k$ was even, we would get \begin{equation} F_{n_0} \equiv F^k_{e(d)+1} \equiv \pm 1 \pmod d, \end{equation} hence $a \equiv \pm 1 \ (\mathrm{mod}\ d)$. This contradiction yields that $k$ is odd, thus $e(d)$ is even and we get \begin{equation} a \equiv -F_{n_0} \equiv -F_{e(d)+1}^k \equiv -\left((-1)^{e(d)}\right)^{\frac{k-1}{2}} F_{e(d)+1} \equiv -F_{e(d)+1} \pmod d. \end{equation} \section{Remarks and future work} \label{secweiter} In this section we will briefly compare our results to the general results of Spilker \cite{spilker}. For $a = \pm 2$, Theorems \ref{sp1}, \ref{sp2}, and \ref{sp3} state, that $\gcd(F_n \pm 2,F_{n+1} \pm 2)$ is a divisor of $5$ respectively $3$, a period of $\gcd(F_n \pm 2,F_{n+1} \pm 2)$ is given by $40$, and since \begin{equation} e(3)=4, \quad F_5=5 \equiv 2 \pmod 3 \qquad \text{ and } \qquad e(5)=5, \quad F_6=8\equiv -2 \pmod 5, \end{equation} the values $3$ and $5$ are attained. The exact values of $\gcd(F_n \pm 2,F_{n+1} \pm 2)$ can be found in \cite{chen} and \cite{spilker}, it turns out, that $40$ is indeed the smallest period. For $a = \pm 3$, Theorems \ref{sp1}, \ref{sp2}, and \ref{sp3} state, that $\gcd(F_n \pm 3,F_{n+1} \pm 3)$ is a divisor of $10$ respectively $8$, a period of $\gcd(F_n \pm 3,F_{n+1} \pm 3)$ is given by $120$, and since \begin{equation} e(8)=6, \quad F_7=13 \equiv -3 \pmod 8 \qquad \text{ and } \qquad e(10)=15, \quad F_{16} = 987 \equiv -3 \pmod {10}, \end{equation} the values $8$ and $10$ are attained. Theorem \ref{thm3} additionally states, that the value $2$ is attained by $\gcd(F_{n_0} \pm 3,F_{n_0+1} \pm 3)$ for some even $n_0$, while it is attained for some odd $n_0$ only in the case $a=-3$. This, together with Theorems \ref{thm1} and \ref{thm2}, shows that the cases $a = \pm 3$ are the first ones, in which not every divisor of $a^2+1$ respectively $a^2-1$ occurs as a greatest common divisor. From the exact values computed in Theorems \ref{thm1} and \ref{thm2}, we also see that the smallest period of $\gcd(F_n \pm 3,F_{n+1} \pm 3)$ is not $120$, but $60$. These observations give rise to some new questions: \begin{problem} Given $a \in \mathbb{Z}$ with $\abs{a} \geq 2$, what is the smallest period of $\gcd(F_n+a,F_{n+1}+a)$? \end{problem} \begin{problem} Theorem \ref{thm3} only gives a necessary but not a sufficient condition for a divisor $d$ of $a^2 \pm 1$ to occur as a greatest common divisor. Theorem \ref{sp3} gives also a sufficient condition for $d=a^2 \pm 1$ to occur as a greatest common divisor. Are there any sufficient conditions for $d \neq a^2 \pm 1$? \end{problem} \begin{problem} Let $a \in \mathbb{Z}$ with $\abs{a} \geq 2$. Since $G_0(a) \subset D(a^2+1)$ and $G_1(a) \subset D(a^2-1)$, we have $\abs{G_0(a)} \leq \tau(a^2+1)$ and $\abs{G_1(a)} \leq \tau(a^2-1)$ (where $\tau(n) = \sum_{d|n} 1$ denotes the divisor function). What are the (exact or asymptotic) sizes of $G_0(a)$ and $G_1(a)$? \end{problem} \begin{thebibliography}{9} \bibitem {chen} K.-W. Chen, Greatest common divisors in shifted Fibonacci sequences, \textit{J. Integer Sequences} \textbf{14} (2011), \href{https://cs.uwaterloo.ca/journals/JIS/VOL14/Chen/chen70.html}{Article 11.4.7}. \bibitem {dudtuck} U. Dudley and B. Tucker, Greatest common divisors in altered Fibonacci sequences, \textit{Fibonacci Quart.} \textbf{9} (1971), 89--91. \bibitem {koshy} T. Koshy, \textit{Fibonacci and Lucas Numbers With Applications}, Wiley-Interscience, 2001. \bibitem {spilker} J. Spilker, The gcd of the shifted Fibonacci sequence, in J\"urgen Sander, J\"orn Steuding, and Rasa Steuding, eds., \textit{From Arithmetic to Zeta-Functions}, Springer, 2016, pp.~473--483. \bibitem {wall} D. D. Wall, Fibonacci series modulo $m$, \textit{Amer. Math. Monthly} \textbf{67} (1960), 525--532. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11B39; Secondary 11A05. \noindent \emph{Keywords: } shifted Fibonacci sequence, greatest common divisor. \bigskip \hrule \bigskip \noindent (Concerned with sequence \seqnum{A000045}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received January 31 2018; revised version received June 20 2018. Published in {\it Journal of Integer Sequences}, August 22 2018. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .