\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{problem}[theorem]{Problem} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\Large\bf The Arithmetic Jacobian Matrix and Determinant} \vskip 1cm \large Pentti Haukkanen and Jorma K. Merikoski \\ Faculty of Natural Sciences \\ FI-33014 University of Tampere\\ Finland\\ \href{mailto:pentti.haukkanen@uta.fi}{\tt pentti.haukkanen@uta.fi} \\ \href{mailto:jorma.merikoski@uta.fi}{\tt jorma.merikoski@uta.fi} \\ \ \\ Mika Mattila\\ Department of Mathematics\\ Tampere University of Technology\\ PO Box 553 \\ FI-33101 Tampere\\ Finland\\ \href{mailto:mika.mattila@tut.fi}{\tt mika.mattila@tut.fi}\\ \ \\ Timo Tossavainen\\ Department of Arts, Communication and Education\\ Lulea University of Technology\\ SE-97187 Lulea\\ Sweden\\ \href{mailto:timo.tossavainen@ltu.se}{\tt timo.tossavainen@ltu.se} \end{center} \vskip .2 in \begin{abstract} Let $a_1,\dots,a_m$ be real numbers that can be expressed as a finite product of prime powers with rational exponents. Using arithmetic partial derivatives, we define the arithmetic Jacobian matrix~$\bf J_a$ of the vector ${\bf a}=(a_1,\dots,a_m)$ analogously to the Jacobian matrix~$\bf J_f$ of a vector function~$\bf f$. We introduce the concept of multiplicative independence of $\{a_1,\dots,a_m\}$ and show that $\bf J_a$ plays in it a similar role as $\bf J_f$ does in functional independence. We also present a kind of arithmetic implicit function theorem and show that $\bf J_a$ applies to it somewhat analogously as $\bf J_f$ applies to the ordinary implicit function theorem. \end{abstract} \section{Introduction} Let $\mathbb{R}$, $\mathbb{Q}$, $\mathbb{Z}$, $\mathbb{N}$, and~$\mathbb{P}$ stand for the set of real numbers, rational numbers, integers, nonnegative integers, and primes, respectively. If $a\in\mathbb{R}$, there may be a sequence of rational numbers $(\nu_p(a))_{p\in\mathbb{P}}$ with only finitely many nonzero terms satisfying \begin{eqnarray} \label{a} a=(\mathrm{sgn}\,a)\prod_{p\in\mathbb{P}}p^{\nu_p(a)}, \end{eqnarray} where sgn is the sign function. We let $\mathbb{R}'$ and~$\mathbb{R}'_+$ denote the set of all such real numbers and the subset consisting of its positive elements, respectively. Formula~(\ref{a}) is also valid for~$a=0$, as we define $\nu_p(0)=0$ for all $p\in\mathbb{P}$. If $\nu_p(a)\ne 0$, we say that $p$ \emph{divides}~$a$ and denote $p\mid a$. Otherwise, we denote $p\nmid a$. \begin{proposition} Let $a\in\mathbb{R}'$ and $V_a=\{\nu_p(a)\mid p\in\mathbb{P}\}$. Then \begin{itemize} \item[{\rm (a)}] $a\in\mathbb{Z}$ if and only if $V_a\subset\mathbb{N}$; \item[{\rm (b)}] $a\in\mathbb{Q}$ if and only if $V_a\subset\mathbb{Z}$. \end{itemize} \end{proposition} \begin{proof} Simple and omitted. \end{proof} \begin{proposition} \label{uniq} If $a\in\mathbb{R}'$, then the sequence $(\nu_p(a))_{p\in\mathbb{P}}$ is unique. \end{proposition} \begin{proof} This is well known if $a\in\mathbb{Q}$. Otherwise, see \cite[Lemma~1]{UA}. \end{proof} We define the {\em arithmetic derivative} of~$a\in\mathbb{R}'$ by $$ a'= a\sum_{p\in\mathbb{P}}\frac{\nu_p(a)}{p}=\sum_{p\in\mathbb{P}}a'_p, $$ where \begin{eqnarray} \label{partder} a'_p=\frac{\nu_p(a)}{p}a \end{eqnarray} is the {\em arithmetic partial derivative} of~$a$ with respect to~$p$. For the background and history of these concepts, see, e.g., \cite{Ba, UA, Ko, HMT}. These references mainly concern the arithmetic derivative in $\mathbb{N}$, $\mathbb{Z}$, or~$\mathbb{Q}$, but most of the results can be extended to~$\mathbb{R}'$ in an obvious way, see \cite[Section~9]{UA}. Let ${\bf f}=(f_1,\dots,f_m): E\to\mathbb{R}^m$ be a continuously differentiable function, where $E\subseteq\mathbb{R}^n$ is a connected open set. Its {\em Jacobian matrix} at ${\bf t}=(t_1,\dots,t_n)\in E$ is defined by $$ {\bf J_f}({\bf t})=\left( \begin{array}{cccc} (f_1)'_{t_1}(\bf{t})&(f_1)'_{t_2}(\bf{t})&\dots&(f_1)'_{t_n}(\bf{t}) \\ (f_2)'_{t_1}(\bf{t})&(f_2)'_{t_2}(\bf{t})&\dots&(f_2)'_{t_n}(\bf{t}) \\ &\vdots&& \\ (f_m)'_{t_1}(\bf{t})&(f_m)'_{t_2}(\bf{t})&\dots&(f_m)'_{t_n}(\bf{t}) \end{array} \right), $$ where $(f_i)'_{t_j}=\partial f_i/\partial t_j$. If $m=n$, then $\det{\bf J_f}({\bf x})$ is the {\em Jacobian determinant} (or, more briefly, the {\em Jacobian}) of~$\bf f$. Let $a_1,\dots,a_m\in\mathbb{R}'_+$ (actually, we could study~$\mathbb{R}'$ instead of~$\mathbb{R}'_+$, which, however, would not benefit us in any significant way), and denote \begin{eqnarray} \label{p} P=\{p_1,\dots,p_n\}=\{p\in\mathbb{P}\mid \exists a_i: p\mid a_i\} \end{eqnarray} and \begin{eqnarray} \label{alpha} \alpha_{ij}=\nu_{p_j}(a_i),\quad i=1,\dots,m,\,j=1,\dots,n. \end{eqnarray} Then \begin{eqnarray} \label{ai} a_i=\prod_{p\in\mathbb{P}}p^{\nu_p(a_i)}= p_1^{\alpha_{i1}}p_2^{\alpha_{i2}}\cdots p_n^{\alpha_{in}},\quad i=1,\dots,m. \end{eqnarray} Further, let \begin{eqnarray} \label{alphavec} {\bf a}=\left( \begin{array}{c} a_1\\a_2\\\vdots\\a_m \end{array} \right), \qquad \boldsymbol{\alpha}_i=\left( \begin{array}{c} \alpha_{i1} \\ \alpha_{i2} \\ \vdots \\ \alpha_{in} \end{array} \right),\quad i=1,\dots,m, \end{eqnarray} and \begin{eqnarray} \label{as} {\bf A_a}= \left( \begin{array}{cccc} \alpha_{11}&\alpha_{12}&\dots&\alpha_{1n} \\ \alpha_{21}&\alpha_{22}&\dots&\alpha_{2n} \\ &\vdots&& \\ \alpha_{m1}&\alpha_{m2}&\dots&\alpha_{mn} \end{array} \right)= \left( \begin{array}{c} \boldsymbol{\alpha}_1^T \\ \boldsymbol{\alpha}_2^T \\ \vdots \\ \boldsymbol{\alpha}_m^T \end{array} \right). \end{eqnarray} We define the \emph{arithmetic Jacobian matrix} of~$\bf a$ by $$ {\bf J_a}=\left( \begin{array}{cccc} (a_1)'_{p_1}&(a_1)'_{p_2}&\dots&(a_1)'_{p_n} \\ (a_2)'_{p_1}&(a_2)'_{p_2}&\dots&(a_2)'_{p_n} \\ &\vdots&& \\ (a_m)'_{p_1}&(a_m)'_{p_2}&\dots&(a_m)'_{p_n} \end{array} \right) $$ and, if $m=n$, the \emph{arithmetic Jacobian determinant} (or, more briefly, the \emph{arithmetic Jacobian}) of~$\bf a$ by $$ \det{\bf J_a}=\left| \begin{array}{cccc} (a_1)'_{p_1}&(a_1)'_{p_2}&\dots&(a_1)'_{p_m} \\ (a_2)'_{p_1}&(a_2)'_{p_2}&\dots&(a_2)'_{p_m} \\ &\vdots&& \\ (a_m)'_{p_1}&(a_m)'_{p_2}&\dots&(a_m)'_{p_m} \end{array} \right|. $$ Let $\bf f$ be as above. The functions $f_1,\dots,f_m$ are functionally independent (i.e., there is no function $\phi:\mathbb{R}^m\to\mathbb{R}$ such that $\nabla\phi(\bf f(t))\ne 0$ and $\phi(f_1({\bf t}),\dots,f_m({\bf t}))=0$ for all ${\bf t}\in E$) if and only if $m\le n$ and ${\rm rank}\,{\bf J_f(t)}=m$ for all ${\bf t}\in E$. (See, e.g.,~\cite{Ne}.) In Section~\ref{mlinindep}, we will define the concept of multiplicative independence of the numbers $a_1,\dots,a_m$ and study the role of~${\bf J_a}$ there. We outline the implicit function theorem~\cite[Theorem~9.28]{Ru}. Assuming $m