\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage{pstricks} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \newcommand{\A}{{\mathcal A}} \newcommand{\T}{{\mathcal T}} \newcommand{\Shi}{{\mathcal S}} \newcommand{\Cat}{{\mathcal C}} \newcommand{\ST}{{\mathcal{ST}}} \newcommand{\CT}{{\mathcal{CT}}} \newcommand{\real}{{\mathbb R}} \newcommand{\0}{\hat{0}} \newcommand{\fld}{{\mathbb F}} \newcommand{\cpst}{\chi_{\ST_n}} \newcommand{\cpct}{\chi_{\CT_n}} \newcommand{\dff}[1]{{(\!({#1})\!)}} \newcommand\comment[1]{{\textcolor{red}{\bf [[ #1 ]]}}} \begin{center} \vskip 1cm{\LARGE\bf The Catalan Threshold Arrangement} \vskip 1cm \large Seunghyun Seo\\ Department of Mathematics Education\\ Kangwon National University\\ The Republic of Korea\\ \href{mailto:shyunseo@kangwon.ac.kr}{\tt shyunseo@kangwon.ac.kr} \\ \end{center} \vskip .2 in \begin{abstract} The Catalan threshold arrangement is a hyperplane arrangement defined by $x_i + x_j=0,1,-1$. Using the finite field method, we obtain the number of regions and the characteristic polynomial of the Catalan threshold arrangement. We also give the exponential generating function for the characteristic polynomial of the Catalan threshold arrangement. \end{abstract} \section{Introduction} Hyperplane arrangements are very interesting combinatorial objects and many results can be found in the literature. For instance, several papers \cite{Ard, Ath, PoSt, Seo} are concerned with the characteristic polynomials and the number of regions of a hyperplane arrangement. In his paper \cite{Sta3}, Stanley reviewed various hyperplane arrangements raising interesting questions, one of which is related to the following hyperplane arrangement: $$ x_i + x_j =0,1,\quad 1 \leq i < j \leq n. $$ This is called the Shi threshold arrangement \cite[p.\ 473]{Sta3}. Stanley asked to find the characteristic polynomial of the Shi threshold arrangement. In a recent paper~\cite{Seo}, the author provided an answer to that question by applying the finite field method. The finite field method was first developed into a tool for computing characteristic polynomials by Athanasiadis \cite{Ath}. In this paper, we study the following generalization of the Shi threshold arrangement: \begin{equation*} x_i + x_j =0,1,-1, \quad 1 \leq i < j \leq n. \end{equation*} Throughout this paper, we will call this arrangement the Catalan threshold arrangement. The main result of this paper is the characteristic polynomial of the Catalan threshold arrangement. We also obtain the exponential generating function for the characteristic polynomial. This paper is organized as follows. In Section~\ref{sec2}, we recall some basic facts on hyperplane arrangements and related combinatorial objects that are used in the sequel. In Section~\ref{sec3}, we prove our main result in Theorem~\ref{thm:ch-poly} by the finite field method. The exponential generating function for the characteristic polynomial of the Catalan threshold arrangement is proven in Equation~\eqref{eq:gen-cha-ct}. \section{Preliminaries} \label{sec2} We recall some notation and concepts of hyperplane arrangements and related combinatorial objects. For a more thorough introduction, see \cite{Comt, OT, Sta3}. \subsection{Basic concepts of hyperplane arrangements} Given a positive integer $n$ and a field $K$, a finite set of affine hyperplanes in the vector space $K^n$ is called a \emph{hyperplane arrangement} (or \emph{arrangement} for short). Now, let $K=\real$. A \emph{region} of an arrangement $\A$ is a connected component of $\real^n - \bigcup_{H \in \A} H$. We denote the number of regions of $\A$ by $r(\A)$. Given an arrangement $\A$ in a vector space $V$, let $L(\A)$ be the set of all nonempty intersections of hyperplanes in $\A$, including $V$. We define $x \leq y$ in $L(\A)$ if $x \supseteq y$. We call $L(\A)$ the \emph{intersection poset} of $\A$. For a finite poset $P$ with $\0$, the \emph{M\"{o}bius function} $\mu:P\to \mathbb{Z}$ is defined by $$ \mu(\0)=1\quad\mbox{and}\quad \mu(x)=-\sum_{y0$, $$ \alpha_{n,k,\ell} =\binom{k-1}{\ell-1}{s}_{n,k} +\binom{k-2}{\ell-1}{s}_{n-1,k-1} +2\binom{k-1}{\ell}{s}_{n-1,k-1} +2\binom{k-2}{\ell}{s}_{n-2,k-2}\,, $$ where ${s}_{n,k}$ is defined by ${s}_{n,k}=\frac{k!}{n!}S(n,k)$. \end{theorem} \begin{proof} Since we can easily check that \eqref{eq:main} holds for $n\le 2$, we may assume $n \ge 3$. By considering all the cases (i)--(iv), we have \begin{align}\label{lin-combin} \chi_{\CT_n}(q) =& a_{r-1}(n)+n\,a_{r-2}(n-1)+2n\,b_{r-2}(n-1)+2n(n-1)\,b_{r-2}(n-2)\\ =& \sum_{j\geq 0}a\left(\frac{q-3}{2},j\right)\,j!\,S(n,j) + n \sum_{j\geq 0}a\left(\frac{q-5}{2},j\right)\,j!\,S(n-1,j)\notag\\ &+ 2n \sum_{j\geq 0}b\left(\frac{q-5}{2},j\right)\,j!\,S(n-1,j) + 2n(n-1) \sum_{j\geq 0}b\left(\frac{q-7}{2},j\right)\,j!\,S(n-2,j)\,,\notag \end{align} for infinitely many primes $q=2r+1$. Since $n \ge 3$, we can ignore the case $j=0$. By applying~\eqref{id_b-Del},~\eqref{id_a-Del}, and~\eqref{id_Del2}, we have \begin{align*} \chi_{\CT_n}(t) =& \sum_{j=1}^{n}\sum_{d=1}^j S(n,j)\frac{j!}{d!}\binom{j-1}{d-1}\dff{t-2j-1}_d\\ &+ \sum_{j=1}^{n}\sum_{d=1}^j n\,S(n-1,j)\frac{j!}{d!}\binom{j-1}{d-1}\dff{t-2j-3}_d\\ &+ \sum_{j=1}^{n}\sum_{d=0}^j 2n\,S(n-1,j)\frac{j!}{d!}\binom{j}{d}\dff{t-2j-3}_d\\ &+ \sum_{j=1}^{n}\sum_{d=0}^j 2n(n-1)\,S(n-2,j)\frac{j!}{d!}\binom{j}{d}\dff{t-2j-5}_{d} \,. \end{align*} Let $\left[\dff{t-2k-1}_{\ell} \right] F(x)$ be the ``coefficient" of $\dff{t-2k-1}_{\ell}$ in $F(x)$. Then \begin{align*} \left[\dff{t-2k-1}_{\ell}\right]&\chi_{\CT_n}(t) \,=\,S(n,k)\frac{k!}{\ell !}\binom{k-1}{\ell-1} +nS(n-1,k-1)\frac{(k-1)!}{\ell !}\binom{k-2}{\ell-1}\\ &+2nS(n-1,k-1)\frac{k!}{\ell !}\binom{k-1}{\ell} +2n(n-1)S(n-2,k-2)\frac{(k-2)!}{\ell !}\binom{k-2}{\ell}. \end{align*} Since $\alpha_{n,k,\ell}=\frac{\ell !}{n!}\left[\dff{t-2k-1}_{\ell}\right]\chi_{\CT_n}(t)$, we have \begin{align*} \alpha_{n,k,\ell} =&\frac{k!}{n!} S(n,k)\binom{k-1}{\ell-1} +\frac{(k-1)!}{(n-1)!}S(n-1,k-1)\binom{k-2}{\ell-1} \\ &+2\frac{(k-1)!}{(n-1)!}S(n-1,k-1)\binom{k-1}{\ell} +2\frac{(k-2)!}{(n-2)!}S(n-2,k-2)\binom{k-2}{\ell} \,. \end{align*} \end{proof} For instance $\chi_{\CT_0}(t)=1$,~~$\chi_{\CT_1}(t)=t$,~~$\chi_{\CT_2}(t)=t^2 -3t$,~~and \begin{eqnarray*} \chi_{\CT_3}(t) &=& t^3-9t^2+27t-27 \\ \chi_{\CT_4}(t) &=& t^4-18t^3+135t^2-483t+675\\ \chi_{\CT_5}(t) &=& t^5-30t^4+405t^3-2955t^2+11340t-17993. \end{eqnarray*} Applying Zaslavsky's theorem, we have the following result. \begin{corollary} The number of regions of the Catalan threshold arrangement $\CT_n$ is given by \begin{align*} r(\CT_n) &= (-1)^n n!\sum_{k=0}^{n}\sum_{\ell=0}^k \alpha_{n,k,\ell}\,(-2)^{\ell} \binom{k+1}{\ell}\,, \end{align*} where $\alpha_{n,k,\ell}$ is defined in Theorem~\ref{thm:ch-poly}. \end{corollary} The sequence $(r(\CT_n))_{n \geq 0}$ starts with $$1,\,1,\,4,\,64,\,1312,\,32724,\,979316,~\ldots$$ which is not listed in the On-Line Encyclopedia of Integer Sequences \cite{Slo1}. \subsection{The exponential generating function for $\cpct(t)$} Recall the definition of $b_m(n)$ in \eqref{eq:bmn}. By the exponential formula we have $$ b_m(n)= \sum_{j \ge 0} b(m,j) \left[\frac{x^n}{n!} \right] (e^x-1)^j, $$ where $\left[\frac{x^n}{n!} \right] F(x)$ is the coefficient of $\frac{x^n}{n!}$ in the power series $F(x)$. Thus \begin{equation} \label{eq:gen-amn-m} \sum_{n \ge 0} b_m(n)\frac{x^n}{n!} = \sum_{j \ge 0} b(m,j)(e^x-1)^j. \end{equation} It is easy to show that \begin{equation} \label{eq:gen-amn-l} \sum_{j \ge 0} D(j+\alpha,j){z^j} = \frac{{R(z)}^{\alpha}}{D(z)}\,, \end{equation} where $D(z)$ and $R(z)$ are given in~\eqref{gf_cDel} and~\eqref{gf_Sch}. Note that this is an extended version of the following well known (for example~\cite[p.\ 54]{Wi}) identity \begin{equation*} \sum_{j \ge 0} \binom{2j+\alpha}{j}{z^j} = \frac{{C(z)}^{\alpha}}{\sqrt{1-4z}}\,, \end{equation*} where $C(z)$ is the ordinary generating function for the Catalan number. Recall $b(m,j)=D(m-j+1,j)$. By \eqref{id_Del1}, we see that $b(m,j)$ can be considered as a monic polynomial in $m$ with degree $j$. By simple calculation, we have \begin{align*} D(m-j+1,j) &=\sum_{0\le d \le j} \binom{j}{d} \binom{m+1-d}{j}\\ &=(-1)^j \sum_{0\le d \le j} \binom{j}{d} \binom{j-m-2+d}{j}\\ &=(-1)^j \sum_{0\le c\le j} \binom{j}{c} \binom{2j-m-2-c}{j} \tag{$c=j-d$}\\ &=(-1)^j D(j-m-2,j). \end{align*} By replacing $\alpha=-m-2$ and $z=-(e^x-1)$, we obtain \begin{equation} \label{eq:gen-amn-r} \sum_{j \ge 0} D(j+\alpha,j){z^j} =\sum_{j \ge 0} b(m,j)(e^x -1)^{j}\,. \end{equation} Combining \eqref{eq:gen-amn-m}, \eqref{eq:gen-amn-l}, and \eqref{eq:gen-amn-r} yields that \begin{equation*} \label{eq:gen-amn} \sum_{n \ge 0} b_m(n)\frac{x^n}{n!} = \frac{{R(1-e^x)}^{-m-2}}{D(1-e^x)}\,. \end{equation*} Meanwhile, from~\eqref{eq:amn}, we deduce that \begin{align*} \label{eq:gen-amn1} \sum_{n \ge 0} a_m(n)\frac{x^n}{n!} &=\sum_{n\ge 0}\sum_{j\ge 0} a(m,j)S(n,j)j! \frac{x^n}{n!} \\ &=\sum_{n\ge 0}\sum_{j\ge 0} b(m-1,j)S(n,j)j!\frac{x^n}{n!} +\sum_{n\ge 0}\sum_{j\ge 1} b(m-2,j-1)S(n,j)j! \frac{x^n}{n!} \\ &= \sum_{n \ge 0} b_{m-1}(n)\frac{x^n}{n!}+\sum_{j\ge 1} b(m-2,j-1)(e^x -1)^j\\ &= \sum_{n \ge 0} b_{m-1}(n)\frac{x^n}{n!}+(e^x-1)\sum_{n \ge 0} b_{m-2}(n)\frac{x^n}{n!} . \end{align*} Thus we have \begin{equation*} \label{eq:gen-amn1} \sum_{n \ge 0} a_m(n)\frac{x^n}{n!} = \frac{{R(1-e^x)}^{-m-1}-{R(1-e^x)}^{-m}}{D(1-e^x)}\,. \end{equation*} As seen in~\eqref{lin-combin}, the characteristic polynomial $\chi_{\CT_n}(t)$ can be expressed as a linear combination of $a_m(n)$ and $b_m(n)$. So, with simple calculations, we can deduce the exponential generating function for $\chi_{\CT_n}(t)$: \begin{equation}\label{eq:gen-cha-ct} \sum_{n \geq 0} \chi_{\CT_n}(t)\frac{x^n}{n!} ~=~\frac{{R(1-e^x)}^{\frac{1-t}{2}}}{D(1-e^x)} \Big(1+xR(1-e^x) \Big) \Big(1+2x-(1-e^x)R(1-e^x) \Big)\,. \end{equation} Put $t=-1$ and $x=-x$ in~\eqref{eq:gen-cha-ct} to get the exponential generating function for $r(\CT_n)$: \begin{equation}\label{eq:gen-reg-ct} \sum_{n \geq 0} r(\CT_n)\frac{x^n}{n!} ~=~ \frac{{R(1-e^{-x})}}{D(1-e^{-x})} \Big(1-xR(1-e^{-x}) \Big) \Big(1-2x-(1-e^{-x})R(1-e^{-x}) \Big)\,. \end{equation} \subsection{Remark} Consider a generalized threshold arrangement such as \begin{equation*} \label{arr:gen} x_i + x_j =-\ell,-\ell+1,\ldots,m-1,m\quad 1\leq i < j \leq n, \end{equation*} for nonnegative integers $\ell$ and $m$. We denote the arrangement by $\T_n^{[-\ell,m]}$. By parallel translation, $\T_n^{[-\ell,m]}$ is transformed to either $\T_n^{[-k+1,k]}$ or $\T_n^{[-k,k]}$, which can be called an \emph{extended Shi threshold arrangement} or an \emph{extended Catalan threshold arrangement}. In particular, $\T_n^{[0,1]}=\ST_n$ and $\T_n^{[-1,1]}=\CT_n$. It would be interesting to find the characteristic polynomials of these two arrangements for $k \ge 2$. \section{Acknowledgments} This paper was written during the author's sabbatical year in the Department of Mathematics at the Pennsylvania State University. The author wishes to thank the Department, in particular, A. J. Yee, for her support, hospitality, and helpful advice. This study has been worked with the support of a research grant from Kangwon National University in 2015. \begin{thebibliography}{99} \bibitem{Ard} F. Ardila, Computing the {T}utte polynomial of a hyperplane arrangement, {\em Pacific J. Math.} {\bf 230} (2007), 1--26. \bibitem{Ath} C. A. Athanasiadis, Characteristic polynomials of subspace arrangements and finite fields, {\em Adv. Math.} {\bf 122} (1996), 193--233. \bibitem{CH} V. Chv{\'a}tal and P. L. Hammer, Aggregation of inequalities in integer programming, {\em Ann. of Discrete Math.} {\bf 1} (1977), 145--162. \bibitem{Comt} L. Comtet, {\em Advanced Combinatorics}, D. Reidel Publishing Co., 1974. \bibitem{OT} P. Orlik and H. Terao, {\em Arrangements of Hyperplanes}, Springer-Verlag, 1992. \bibitem{PoSt} A. Postnikov and R. P. Stanley, Deformations of Coxeter hyperplane arrangements, {\em J. Combin. Theory Ser. A} {\bf 91} (2000), 544--597. \bibitem{Seo} S. Seo, Shi threshold arrangement, {\em Electron. J. Combin.} {\bf 19} (3) (2012), {\#}P39. \bibitem{Slo1} N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at \url{http://oeis.org}, 2016. \bibitem{Sta3} R. P. Stanley, An introduction to hyperplane arrangements, in E. Miller, V. Reiner, and B. Sturmfels, eds., {\em Geometric Combinatorics}, Amer. Math. Soc., 2007, pp.~389--496. \bibitem{Sul} R. A. Sulanke, Bijective recurrences concerning {S}chr\"oder paths, {\em Electron. J. Combin.} {\bf 5} (1998), {\#}R47. \bibitem{Wi} H. S. Wilf, {\em generatingfunctionology}, Academic Press Inc., 1994. \bibitem{Za} T. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, {\em Mem. Amer. Math. Soc.} {\bf 1} (1975), No.~154. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 52C35; Secondary 05A15. \noindent \emph{Keywords:} hyperplane arrangement, Catalan threshold arrangement, finite field method. \bigskip \hrule \bigskip \noindent (Concerned with sequences \seqnum{A000108}, \seqnum{A001850}, \seqnum{A005840}, \seqnum{A006318}, and \seqnum{A008288}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received July 27 2016; revised version received December 22 2016. Published in {\it Journal of Integer Sequences}, December 23 2016. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .