\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Combinatorial Enumeration of Partitions \\ \vskip .11in of a Convex Polygon } \vskip 1cm \Large Dong Zhang and Dongyi Wei\\ Peking University\\ Beijing 100871\\ P. R. China\\ \href{mailto:dongzhang@pku.edu.cn}{\tt dongzhang@pku.edu.cn} \\ \href{mailto:jnwdyi@163.com}{\tt jnwdyi@163.com}\\ \ \\ Demin Zhang\\ Xinxiang\\ Henan\\ P. R. China\\ \href{mailto:winlxm1972@sina.cn}{\tt winlxm1972@sina.cn}\\ \end{center} \newcommand{\A}{\ensuremath{\mathcal{A}}} \newcommand{\card}{\ensuremath{\mathrm{Card}}} \newcommand{\res}{\ensuremath{\mathrm{Res}}} \begin{abstract} We establish a class of polynomials on convex polygons, which provides a new counting formula to all partitions of a convex polygon by non-intersecting diagonals. \end{abstract} \section{Introduction} Counting partitions of a convex polygon of a specified type by using its non-intersecting diagonals is a problem which can go back to Euler, Catalan, Cayley \cite{Cayley} and Przytycki and Sikora \cite{Przy}. Recently, Floater and Lyche \cite{Michael} showed a way to enumerate all partitions of a convex polygon of a certain type as follows. \begin{proposition}[Floater, Lyche \cite{Michael}]\label{pro:1} A partition of a convex $(n + 1)$-gon is said to be of type $\mathbf{b} = (b_2, b_3,\ldots , b_n)$ if it contains $b_2$ triangles, $b_3$ quadrilaterals, and so on, and in general $b_i$ $(i + 1)$-gons. Then the number of partitions of a convex $(n+1)$-gon of type $\mathbf{b}=(b_2,b_3,\ldots,b_n)$ with $b_2+b_3+\cdots+b_n=k$ and $2b_2+3b_3+\cdots+nb_n=n+k-1$, is $$C(\mathbf{b})=\frac{(n+k-1)(n+k-2)\cdots(n+1)}{b_2! b_3! \cdots b_n!}.$$ \end{proposition} Inspired by Lee's result \cite{Lee}, Shephard \cite{Shephard} got an interesting equality on convex polygons with $n+2$ sides as follows. \begin{proposition}[Lee \cite{Lee}, Shephard \cite{Shephard}]\label{pro:2} Given a $(n+2)$-gon, let $d_1$ be the number of diagonals, $d_2$ be the number of disjoint pairs of diagonals, and, in general, $d_i$ be the number of sets of $i$ diagonals of the polygon which are pairwise disjoint. Then we have \[{d_1} - {d_2} + {d_3} - \cdots + {( - 1)^n}{d_{n - 1}} = 1 + {( - 1)^n}\] \end{proposition} The original proof \cite{Lee} of Proposition \ref{pro:2} is very complicated. We will provide a rather simple proof in the last part. We organize this paper as follows. Section \ref{sec:main} shows the main result (Theorem \ref{1}) via the properties of a derivation acting on a special polynomial algebra. In Section \ref{sec:app}, we prove Propositions \ref{pro:1} and \ref{pro:2} by our main result. \section{Main results}\label{sec:main} We call a vector space $\A:=(\A,+)$ an algebra over the real field $\mathbb{R}$, if $\A$ possesses a bilinear product satisfying $(ab)c=a(bc)$, $(a+b)(c+d)=ac+bc+ad+bd$ and $(\lambda\mu)(ab)=(\lambda a)(\mu b)$, for all $ \lambda,\mu\in \mathbb{R},~a,b,c,d\in\A$. Recall that a linear map $D$ mapping $\A$ into itself is called a derivation if $D(xy)=(Dx)y+x(Dy)$ for all $x,y\in\A$. \begin{definition} Let $\A$ be a polynomial algebra generated by $\{x_i:i\in \mathbb{N}^+\}$, i.e., the collection of the polynomials with the form $\sum_{k=1}^m\sum_{i_1,\ldots,i_k\in \mathbb{N}^+}a_{i_1,\ldots,i_k}x_{i_1}\cdots x_{i_k}$, where $a_{i_1,\ldots,i_k}\in \mathbb{R}$ and $m\in \mathbb{N}^+$. For given $y_i\in \A$, $i\in \mathbb{N}^+$, let $D':\{x_i:i\in \mathbb{N}^+\}\to \A$ be such that $x_i\mapsto y_i$, $i\in \mathbb{N}^+$. The unique extension of $D'$ to $\A$ via Leibniz's law determines a derivation $D$ on $\A$, which is called the derivation defined by $D'$. \end{definition} \begin{lemma}\label{0} Let $\A$ be a polynomial algebra generated by~$\{X_1,X_2,\ldots,X_n,\ldots\}$.~Assume $D$ is a derivation with action defined by \begin{equation}\label{eq:th1_1} DX_n=(an+b)\sum_{i=1}^{n-1}X_iX_{n-i},~n\geq 2,~DX_1=0, \end{equation} where $a$ and $b$ are given real numbers. Then we have \begin{equation}\label{eq:th1_2} D^mX_n=\frac{\prod_{k=1}^{m}(2an+(k+1)b)}{m+1}\sum_{i_1+i_2+\cdots+i_{m+1}=n}X_{i_1}X_{i_2}\cdots X_{i_{m+1}}.\end{equation} \end{lemma} \begin{proof} Let $X(t)=\sum_{i\ge 1}X_it^i$ be a generating function. It follows from $$X(t)^2=\sum_{n\ge 2}\left(\sum_{i=1}^{n-1}X_iX_{n-i}\right)t^n$$ that \begin{align*} \left(at\frac{d}{dt}+b\right)X(t)^2&=\sum_{n\ge2}\left(\sum_{i=1}^{n-1}X_iX_{n-i}\right) \left(at\frac{d}{dt}+b\right)t^n =\sum_{n\ge2}\left(\sum_{i=1}^{n-1}X_iX_{n-i}\right)(an+b)t^n \\&=\sum_{n\ge1}(DX_n) t^n=DX(t). \end{align*} Similarly, the statement \eqref{eq:th1_2} becomes \begin{equation}\label{eq:derivation} D^mX=\frac{1}{m+1}\prod_{i=1}^m\left(2at\frac{d}{dt}+(i+1)b\right)X^{m+1}, \end{equation} where $X:=X(t)$. It is evident that \eqref{eq:derivation} holds for $m=1$. Assume that \eqref{eq:derivation} holds for $m=k$. Now we show that \eqref{eq:derivation} holds for $m=k+1$. In fact, together with \eqref{eq:derivation} for $m=k$ and the fact \begin{align*} DX^m&=mX^{m-1}DX=mX^{m-1}\left(at\frac{d}{dt}+b\right)X^2 \\&=2amX^{m}t\frac{d}{dt}X+bmX^{m+1} \\&=\frac{m}{m+1}\left(2at\frac{d}{dt}+(m+1)b\right)X^{m+1}, \end{align*} we immediately obtain \begin{align*} D^{k+1}X&=D(D^kX)=D\left(\frac{1}{k+1}\prod_{i=1}^k\left(2a\frac{d}{dt}+(i+1)b\right)X^{k+1}\right) \\&=\frac{1}{k+1}\prod_{i=1}^k\left(2at\frac{d}{dt}+(i+1)b\right)DX^{k+1} \\&=\frac{1}{k+1}\prod_{i=1}^k\left(2at\frac{d}{dt}+(i+1)b\right) \frac{k+1}{k+2}\left(2at\frac{d}{dt}+(k+2)b\right)X^{k+2} \\&=\frac{1}{k+2}\prod_{i=1}^{k+1}\left(2at\frac{d}{dt}+(i+1)b\right)X^{k+2}. \end{align*} Therefore, by mathematical induction, we have completed the proof. \end{proof} We call a strictly convex polygon with $n+2$ sides a $(n+2)$-gon, denoted by $X_n$, where $n\in \mathbb{N}^+$. Given an integer $n\ge 2$, we use $\Delta$ to denote a set of diagonals of $X_n$ which are pairwise disjoint. It should be noted that a $\Delta$ with $m$ elements divides $X_n$ into $m+1$ convex polygons, $X_{i_1},X_{i_2},\ldots,X_{i_m}$ and $X_{i_{m+1}}$ for some $i_1,i_2,\ldots,i_m$ and $i_{m+1}$ in $\{1,2,\ldots,n\}$. The set of such convex polygons is said to be a partition of the original convex polygon. We symbolically set $f(\Delta)=\prod_{j=1}^{m+1}X_{i_j}$ and $\card~\Delta=m$. Figure \ref{Fig} provides two examples of $X_n$ for $n=8$ and $n=10$, respectively. \begin{figure}[h!] \begin{center} \epsfbox{polygon.eps} \end{center} \caption{The left figure shows $X_8$ with $\Delta=\{AD,AG,DG\}$ and the corresponding partition $\{ABCD,DEFG,AGHIJ,ADG\}$, where $\card~\Delta=3$, $f(\Delta)=X_1X_2X_2X_3$. The right figure shows $X_{10}$ with $\Delta=\{AE,AJ,EJ,EG,GJ\}$ and the corresponding partition $\{ABCDE,EFG,GHIJ,AJKL,EGJ,AEJ\}$, where $\card~\Delta=5$, $f(\Delta)=X_1X_1X_1X_2X_2X_3$.} \label{Fig} \end{figure} \begin{theorem}\label{1}Given $n\in \mathbb{N}^+$ and $m\in \mathbb{N}$, we have\begin{equation}\label{eq:th2}\sum_{\card~\Delta=m}f(\Delta)=\frac{1}{m+1}{n+m+1\choose m}\sum_{i_1+i_2+\cdots+i_{m+1}=n}X_{i_1}X_{i_2}\cdots X_{i_{m+1}}. \end{equation} \end{theorem} \begin{proof} Consider partitions of $X_n$ with $m$ diagonals, in which the diagonals are labelled, say with integers $1,2,\cdots,m$. Then the derivation $D$ is an operator that acts as an analogue combinatorial device for splitting the polygon on a labelled diagonal; consequently, $D^m$ is an operator that splits the polygon (with $m$ diagonals) into $m + 1$ polygons. We then divide by $m!$ to remove the effect of labelling the diagonals, so that $\frac{D^m}{m!}$ is the operator that produces the counting series for partitioning a polygon into $m + 1$ parts. Next, we calculate $DX_n$. Notice that there are $n-1$ diagonals starting from a vertex, and each diagonal divides $X_n$ into two parts. So we have $n-1$ ways to divide $X_n$, which can be expressed as $X_1X_{n-1}+X_2X_{n-2}+\cdots+X_{n-1}X_1$ by using our notation. Since $X_n$ has $n+2$ vertices, the whole set of partitions of $X_n$ can be written as $(n+2)\sum_{i=1}^{n-1}X_iX_{n-i}$. However, each diagonal has two ends, and will be counted twice. Consequently, we should divide it by $2$, and get $DX_n=\frac{n+2}{2}\sum_{i=1}^{n-1}X_iX_{n-i}$. Taking $a=\frac{1}{2}$ and $b=1$ in Lemma \ref{0}, we have $$\sum_{\card~\Delta=m}f(\Delta)=\frac{1}{m!}D^mX_n=\frac{1}{m+1}{n+m+1\choose m}\sum_{i_1+i_2+\cdots+i_{m+1}=n}X_{i_1}X_{i_2}\cdots X_{i_{m+1}}.$$ \end{proof} \section{Applications}\label{sec:app} A result about partitioning polygons is as follows. \begin{corollary}\label{2} Given $i_1,i_2,\ldots,i_{m+1}$ with $i_1+i_2+\cdots+i_{m+1}=n$. Then the number of different ways of cutting $X_n$ into sub-polygons $X_{i_1},X_{i_2},\ldots,X_{i_{m+1}}$ by diagonals is $\frac{S}{m+1}{n+m+1\choose m}$, where $S$ is the number of permutations of $i_1,i_2,\ldots,i_{m+1}$. \end{corollary} \begin{proof} By Theorem \ref{1}, we obtain that there exist $\frac{S}{m+1}{n+m+1\choose m}$ ways to divide $X_n$ into $X_{i_1},X_{i_2},\ldots,X_{i_{m+1}}$, where $S$ is the number of permutations of $i_1,i_2,\ldots,i_{m+1}$. \end{proof} One can easily verify that Proposition \ref{pro:1} is equivalent to Corollary \ref{2}. \begin{example}[Catalan numbers] Let $m=n-1$. Then $i_1=i_2=\cdots=i_{m+1}=1$ is the only positive integer solution of $i_1+i_2+\cdots+i_{m+1}=n$. Hence $S=1$, and we get the Catalan numbers $\frac{1}{n}{2n\choose n-1}=\frac{1}{n+1}{2n\choose n}$. \end{example} Next we give a new proof for Proposition \ref{pro:2} by using Theorem \ref{1} and the residue theorem. \begin{proof}[Proof of Proposition \ref{pro:2}] Consider $X_n$. Notice that the number of positive integer solutions of $i_1+i_2+\cdots+i_{m+1}=n$ is ${n-1\choose m}$. By Theorem \ref{1}, there are $\sum\limits_{i_1+i_2+\cdots+i_{m+1}=n}\frac{1}{m+1}{n+m+1\choose m}$ monomials on the right-hand side of (\ref{eq:th2}). Thus we get $d_m=\frac{1}{m+1}{n-1\choose m}{n+m+1\choose m}$, and then \begin{align*} \sum_{k=1}^{n-1}(-1)^kd_k&=\sum_{k=1}^{n-1}(-1)^{k-1} \frac{{n-1\choose k}}{k+1}{n+k+1\choose k} \\&=\sum_{k=1}^{n-1}(-1)^{k-1}\frac{{n\choose k+1}}{n}\res \left(\frac{(1+u)^{n+k+1}}{u^{k+1}},0\right) \\&=\frac{1}{n}\res \left((1+u)^{n}\sum_{k=1}^{n-1}(-1)^{k-1}{n\choose k+1}\frac{(1+u)^{k+1}}{u^{k+1}},0\right) \\&=\frac{1}{n}\res \left((1+u)^{n}\left((1-\frac{u+1}{u})^n-(1-n\frac{u+1}{u})\right),0\right) \\&=\frac{1}{n}\res \left((1+u)^{n}\left((-\frac{1}{u})^n-1+n\frac{u+1}{u}\right),0\right) \\&=\frac{1}{n}\left((-1)^n \res \left(\frac{(1+u)^{n}}{u^n},0\right)+n\res \left(\frac{(1+u)^{n+1}}{u},0\right)\right) \\&=\frac{1}{n}\left((-1)^n {n\choose n-1}+n\cdot 1\right) \\&=1+(-1)^n, \end{align*} where $\res(f(u),0)$ means the residue of function $f(u)$ at $u=0$. \end{proof} \begin{remark} Proposition \ref{pro:2} also follows immediately from the hypergeometric summation formula, by \begin{align*} \sum_{k=1}^{n-1}(-1)^kd_k&=\sum_{k=1}^{n-1}(-1)^{k-1}\frac{{n-1\choose k}}{k+1}{n+k+1\choose k} =\frac{1}{n}\left(n-\sum_{i=1}^{n-1}{n\choose n-k-1}{-n-2\choose k}\right) \\&=\frac{1}{n}\left(n-{-2\choose n-1}\right)=\frac{1}{n}(n+(-1)^nn)=1+(-1)^n. \end{align*} \end{remark} \section{Acknowledgments} The authors thank the anonymous referee for his/her careful reading and helpful comments. The proofs of Lemma \ref{0} and Theorem \ref{1}, were effectively simplified by the referee. Moreover, he/she also gave the above remark. \begin{thebibliography}{9} \bibitem{Cayley} A. Cayley, On the partition of a polygon, {\it Proc. Lond. Math. Soc. (3)} {\bf 22} (1890), 237--262. \bibitem{Przy} J. H. Przytycki and A. S. Sikora, Polygon dissections and Euler, Fuss, Kirkman, and Cayley numbers, {\it J. Combin. Theory Ser. A} {\bf 92} (2000), 68--76. \bibitem{Michael} M. S. Floater and T. Lyche, Divided differences of inverse functions and partitions of a convex polygon, {\it Math. Comp.} {\bf 77} (2008), 2295--2308. \bibitem{Lee} C. W. Lee, The associahedron and triangulations of the $n$-gon, {\it European J. Combin.} {\bf 10} (1989), 551--560. \bibitem{Shephard} G. C. Shephard, A polygon problem, {\it Amer. Math. Monthly} {\bf 102} (1995), 505--507. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 51E12; Secondary 05A15, 13N15, 16W25. \noindent \emph{Keywords: } polygon, diagonal, combinatorial enumeration, derivation, generating function. \bigskip \hrule \bigskip \noindent (Concerned with sequence \seqnum{A000108}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received April 9 2014; revised versions received April 26 2014; February 4 2015; March 14 2015; July 29 2015; August 6 2015. Published in {\it Journal of Integer Sequences}, August 18 2015. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .