\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\floor}[1] { \left\lfloor #1 \right\rfloor } \newcommand{\fpart}[1] { \left\langle #1 \right\rangle } \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{observation}[theorem]{Observation} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf On a Conjecture on the Representation of \\ \vskip .1in Positive Integers as the Sum of Three Terms \\ \vskip .05in of the Sequence $ \floor{\frac{n^2}{a}}$ } \vskip 1cm \large Sebastian Tim Holdum\\ Niels Bohr Institute \\ University of Copenhagen \\ Denmark \\ \href{mailto:sebastian.holdum@nbi.dk}{\tt sebastian.holdum@nbi.dk} \\ \ \\ Frederik Ravn Klausen and Peter Michael Reichstein Rasmussen \\ Department of Mathematics \\ University of Copenhagen \\ Denmark \\ \href{mailto:tlk870@alumni.ku.dk}{\tt tlk870@alumni.ku.dk} \\ \href{mailto:nmq584@alumni.ku.dk}{\tt nmq584@alumni.ku.dk} \end{center} \vskip .2 in \begin{abstract} We prove some cases of a conjecture by Farhi on the representation of every positive integer as the sum of three terms of the sequence $ \floor{\frac{n^2}{a}}$. This is done by generalizing a method used by Farhi in his original paper. \end{abstract} \section{Introduction} In the following we let $\mathbb{N}$ denote the set of non-negative integers, $\floor{\cdot}$ denote the greatest integer function, and $\fpart{\cdot}$ denote the fractional part function. A classical result by Legendre \cite{threeSquare} states that every natural number not of the form $4^s(8t+7), s, t\in \mathbb{N}$ can be written as the sum of three squares. In relation to this, Farhi recently conjectured the following: \begin{conjecture}[Farhi \cite{Farhi2}]\label{main} Let $a\geq3$ be an integer. Then every natural number can be represented as the sum of three terms of the sequence $\left( \floor{\frac{n^2}{a}} \right)_{n\in \mathbb{N}}$. \end{conjecture} The conjecture was confirmed by Farhi \cite{Farhi1} and Mezroui, Azizi, and Ziane \cite{analyt} for $a\in\{3, 4, 8\}$. In this paper we generalize the method used by Farhi for $a=4$, and partially for $a=3$, to prove that the conjecture holds for $a \in \{$4, 7, 8, 9, 20, 24, 40, 104, 120$\}$. The method uses Legendre's three-square theorem and properties of quadratic residues. We also note that the set of integers $a$ such that Conjecture \ref{main} holds is closed under multiplication by a square. \section{Method and results} We start by introducing the following sets: \begin{definition} For any nonzero $a\in \mathbb N$ we define \begin{align*} \mathcal{Q}_a=\{0<\varphi0$. \end{observation} \begin{proof} This follows easily since for any $n$ we can find $A, B, C\in \mathbb{N}$ such that \begin{align*} n &= \floor{\frac{A^2}{a}} + \floor{\frac{B^2}{a}} + \floor{\frac{C^2}{a}}\\ &= \floor{\frac{(Ak)^2}{ak^2}}+ \floor{\frac{(Bk)^2}{ak^2}} + \floor{\frac{(Ck)^2}{ak^2}}. \end{align*} \end{proof} Knowing this, we see that since Conjecture \ref{main} is satisfied for $a= 3, 9, 4$, and $8$, it must also hold for $a=3^k$ for any positive integer $k$ and for $a=2^k, k>1$. Finally, using Observation \ref{oplagt}, Corollary \ref{vals}, and the fact \cite{analyt} that Conjecture \ref{main} holds for $a=3$, we get that the conjecture holds for the following values up to 120. \begin{align*} a\in \{&3, 4, 7, 8, 9, 12, 16, 20, 24, 27, 28, 32, 36, 40, 48, \\ &63, 64, 72, 75, 80, 81, 96, 100, 104, 108, 112, 120\}. \end{align*} Unfortunately, it seems that the method deployed in Theorem \ref{hovedresultat} is not extendable to other cases, since its success relies on $\mathcal{R}_a$, and in general $\mathcal{R}_a$ does not contain the necessary elements for the condition in the theorem to be satisfied. \section{Acknowledgment} The authors would like to thank Jan Agentoft Nielsen for his suggestions that helped to improve the manuscript. \begin{thebibliography}{9} \bibliographystyle{plain} \bibitem{Farhi1}B. Farhi, On the representation of the natural numbers as the sum of three terms of the sequence $\floor{\frac{n^2}{a}}$, {\it J. Integer Seq.,} {\bf 16} (2013), \href{https://cs.uwaterloo.ca/journals/JIS/VOL16/Farhi/farhi7.html}{Article 13.6.4}. \bibitem{Farhi2} B. Farhi, An elementary proof that any natural number can be written as the sum of three terms of the sequence $\floor{\frac{n^2}{3}}$, {\it J. Integer Seq.,} {\bf 17} (2014), \href{https://cs.uwaterloo.ca/journals/JIS/VOL17/Farhi/farhi12.html}{Article 14.7.6}. \bibitem{threeSquare} A. M. Legendre, {\it Th\'eorie des Nombres}, 3rd ed., Vol.\ 2, 1830. \bibitem{analyt} S. Mezroui, A. Azizi, and M. Ziane, On a conjecture of Farhi, {\it J. Integer Seq.}, {\bf 17} (2014), \href{https://cs.uwaterloo.ca/journals/JIS/VOL17/Mezroui/soufiane4.html}{Article 14.1.8}. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11B13. \noindent \emph{Keywords: } additive base, Legendre's theorem. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received September 29 2014; revised version received March 5 2015; May 19 2015. Published in {\it Journal of Integer Sequences}, May 31 2015. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .