\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\per}{per} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Carlitz's Identity for the Bernoulli Numbers \\ \vskip .1in and Zeon Algebra} \vskip 1cm \large Ant\^onio Francisco Neto\footnote{This work was supported by Conselho Nacional de Desenvolvimento Cient\'ifico e Tecnol\'ogico (CNPq-Brazil) under grant 307617/2012-2.}\\ DEPRO, Escola de Minas\\ Campus Morro do Cruzeiro, UFOP\\ 35400-000 Ouro Preto MG \\ Brazil \\ \href{mailto:antfrannet@gmail.com}{\tt antfrannet@gmail.com}\\ \end{center} \vskip .2 in \begin{abstract} In this work we provide a new short proof of Carlitz's identity for the Bernoulli numbers. Our approach is based on the ordinary generating function for the Bernoulli numbers and a Grassmann-Berezin integral representation of the Bernoulli numbers in the context of the Zeon algebra, which comprises an associative and commutative algebra with nilpotent generators. \end{abstract} \section{Introduction} In this work we will give a new, simple and short proof of Carlitz's identity for the Bernoulli numbers \cite{Carlitz} \begin{equation}\label{CarBer} \sum_{i=0}^m{m \choose i}B_{n+i}=(-1)^{m+n}\sum_{j=0}^n{n \choose j}B_{m+j}, \end{equation} using the Zeon algebra \cite{NetodAnjos,Neto}. The identity in Eq.~(\ref{CarBer}) has been re-obtained many times \cite{Chen,Chu,Gessel,Shannon,VassiMissi} and also very recently \cite{GoQu14,Prodinger,Singh}. The proof given here is of independent interest, because of the simplicity of the arguments involved and, as it has also occurred in other contexts \cite{Abde,Bedi,Cara,Fein,Fein1,Mansour,NetodAnjos,Neto,Schor,Scho,Scho1}, the proof comprises yet another example of the usefulness of Zeon algebra and/or the Grassmann algebra in obtaining combinatorial identities. Before we continue, we establish the basic underlying algebraic setup needed to give the proof of Eq.~(\ref{CarBer}). Throughout this work we let $\mathbb{Q}$ and $\mathbb{R}$ denote the rational and real numbers, respectively. \section{Basic definitions: Zeon algebra and the Grassmann-Berezin integral} \begin{definition}\label{Def1} The \textit{Zeon algebra} $\mathcal{Z}_n \supset \mathbb{R}$ is defined as the associative algebra generated by the collection $\{\varepsilon_i\}_{i=1}^n$ ($n<\infty$) and the scalar $1 \in \mathbb{R}$, such that $1\varepsilon_i=\varepsilon_i=\varepsilon_i1$, $\varepsilon_i \varepsilon_j = \varepsilon_j \varepsilon_i$ $\forall$ $i$, $j$ and $\varepsilon_i^2=0$ $\forall$ $i$. \end{definition} Note that only linear elements in $\mathcal{Z}_n$ contribute to the calculations. For $\{i,j,\ldots,k\} \subset \{1,2,\ldots,n\}$ and $\varepsilon_{ij\cdots k}\equiv \varepsilon_i\varepsilon_j\cdots \varepsilon_k$ the most general element with $n$ generators $\varepsilon_i$ can be written as (with the convention of sum over repeated indices implicit) \begin{equation}\label{phi}\phi_n= a+a_i\varepsilon_i+a_{ij}\varepsilon_{ij}+\cdots+ a_{12\cdots n}\varepsilon_{12\cdots n}=\sum_{\mathbf{i} \in 2^{[n]}}a_{\mathbf{i}}\varepsilon_\mathbf{i},\end{equation} with $a$, $a_i$, $a_{ij}$, $\ldots$, $a_{12\cdots n}$ $\in$ $\mathbb{R}$, $2^{[n]}$ being the power set of $[n]:=\{1,2,\ldots,n\}$, and $1\leq i