\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \DeclareMathOperator{\lcm}{lcm} % Common number systems \newcommand{\C}{\mathbf{C}} \newcommand{\N}{\mathbf{N}} \newcommand{\Q}{\mathbf{Q}} \newcommand{\R}{\mathbf{R}} \newcommand{\Z}{\mathbf{Z}} \newcommand{\op}{\mathcal{O}(P)} \newcommand{\HH}{\mathcal{H}} % Preferences \renewcommand{\phi}{\varphi} \renewcommand{\emptyset}{\varnothing} \newcommand{\eps}{\varepsilon} \newcommand{\injects}{\hookrightarrow} \renewcommand{\tilde}[1]{\widetilde{#1}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\DS}{\displaystyle} \newcommand{\Hs}{\mathrm{H}} \newcommand{\leftexp}[2]{\vphantom{#2}^{#1} #2} \newcommand{\s}{\mathfrak{S}} \newcommand{\co}{\operatorname{co}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \newtheorem{question}[theorem]{Question} \begin{center} \vskip 1cm{\LARGE\bf The Face Vector of a \\ \vskip .1in Half-Open Hypersimplex} \vskip 1cm \large Takayuki Hibi\\ Department of Pure and Applied Mathematics\\ Graduate School of Information Science and Technology\\ Osaka University\\ Toyonaka, Osaka 560-0043 \\ Japan\\ \href{mailto:hibi@math.sci.osaka-u.ac.jp}{\tt hibi@math.sci.osaka-u.ac.jp}\\ \ \\ Nan Li\\ Department of Mathematics\\ Massachusetts Institute of Technology\\ Cambridge, MA 02139 \\ USA\\ \href{mailto:nan@math.mit.edu}{\tt nan@math.mit.edu}\\ \ \\ Hidefumi Ohsugi\\ Department of Mathematical Sciences\\ School of Science and Technology\\ Kwansei Gakuin University\\ Sanda, Hyogo, 669-1337 \\ Japan\\ \href{mailto:ohsugi@kwansei.ac.jp}{\tt ohsugi@kwansei.ac.jp} \end{center} \newpage \begin{abstract} The half-open hypersimplex $\Delta'_{n,k}$ consists of those $(x_{1}, \ldots, x_{n}) \in[0,1]^n$ with $k-12$, $\HH_i^{(1)} \cap \HH_j^{(1)} \cap \Delta'_{n,2}=\{ {\bf e}_i + {\bf e}_j \}$ is $0$-dimensional. \item For all $n >2$, the dimension of $$ \HH_i^{(1)} \cap \HH_j^{(0)} \cap \Delta'_{n,2} = \left\{ \, (x_1,\ldots,x_n) \in [0,1]^n \, : \, x_i = 1,\ x_j = 0, \ 0<\sum_{m\in[n]\backslash \{i,j\}}x_m\le 1 \, \right\}$$ is $n-2$. There are $2\binom{n}{2}$ such pairs for $n>2$. \item The intersection $$ \HH_i^{(0)} \cap \HH_j^{(0)} \cap \Delta'_{n,2} = \left\{ \, (x_1,\ldots,x_n) \in [0,1]^n \, : \, x_i = x_j = 0, \ 1<\sum_{m\in[n]\backslash \{i,j\}}x_m\le 2 \, \right\}$$ is $(n-2)$-dimensional if $n>3$, and empty if $n = 3$. There are $\binom{n}{2}$ such pairs for $n>3$. \item For all $n >2$, the dimension of $$\HH \cap \HH_i^{(1)} \cap \Delta'_{n,2} = \left\{ \, (x_1,\ldots,x_n) \in [0,1]^n \, : \, x_i = 1, \ \sum_{m\in[n]\backslash \{i\}}x_m= 1 \, \right\} $$ is $n-2$. \item The dimension of $$\HH \cap \HH_i^{(0)} \cap \Delta'_{n,2} =\left\{ \, (x_1,\ldots,x_n) \in [0,1]^n \, : \, x_i = 0,\ \sum_{m\in[n]\backslash \{i\}}x_m= 2 \, \right\}$$ is $n-2$ for $n>3$, and $0$ for $n = 3$. \end{itemize} In conclusion, for $k=2$ and $n\ge 3$, one has \begin{displaymath} f_{n-2} (\Delta'_{n,2}) = \begin{cases} 2\binom{n}{2}+n, & \text{if} \, \, \, \, n=3,\\ \\ 3\binom{n}{2}+2n, & \text{if} \, \, \, \, n>3. \end{cases} \end{displaymath} (It is easy to see that $f_0 (\Delta'_{2,2}) = 1$.) } \end{example} Following the enumeration method in Example \ref{Boston}, one has the following general formula. \begin{theorem}\label{f} Let $0 < k \leq n$ and let $f(\Delta'_{n,k})=(f_{0} (\Delta'_{n,k}), \ldots, f_{n} (\Delta'_{n,k}))$ denote the $f$-vector of the half-open hypersimplex $\Delta'_{n,k}$. Then one has $f_0 (\Delta'_{n,k}) = \binom{n}{k}$ and $$ f_j (\Delta'_{n,k}) = \binom{n+1}{j+1} \sum_{s=\max\{0,k-j\}}^{k-1} \binom{n-j}{s} \frac{n-s+1}{n+1} $$ for $j = 1,2,\ldots,n$. \end{theorem} \begin{proof} Similar as in Example \ref{Boston} for $f_{n-2}(\Delta'_{n,k})$ when $k=2$, here for general $k$, $f_{n-i}(\Delta'_{n,k})$ is the number of the $i$-set $\{h_1,\dots,h_i\}$ which has $(n-i)$-dimensional intersection with $\Delta'_{n,k}$. There are again two cases: in the formula (\ref{below}) below, the part of $\binom{n}{i}$ deals with the case $\HH$ is not included in these $i$ hyperplanes, and the part of $\binom{n}{i-1}$ deals with the case when $\HH$ is one of the $i$ hyperplanes. Let us look at the first case carefully, and the second case is enumerated similarly. In the first case, the $i$-tuple $(h_1,\ldots, h_i)$ satisfies $$ h_1 \cap \cdots \cap h_i = \left( \bigcap_{\alpha \in I} \HH_{\alpha}^{(0)} \right) \cap \left( \bigcap_{\beta \in J} \HH_{\beta}^{(1)} \right) $$ for some $ I,J\subset [n] $ such that $ I\cap J=\emptyset $ and $\# (I\cup J)=i $. Let $s=\#J$. Then there are in total $\binom{i}{s}$ such $i$-tuples. Now the key point is whether the intersection of all these $i$ hyperplanes with $\Delta'_{n,k}$ is $(n-i)$-dimensional or not. Here is their intersection: $$ \left\{(x_1,\ldots,x_n)\in [0,1]^n \, : \, \begin{array}{c} x_\alpha = 0 \ (\alpha \in I), \ x_\beta =1 \ (\beta \in J)\\ k-s-1<\sum_{m\in[n]\backslash (I\cup J)}x_m\le k-s \end{array} \right\}.$$ Notice that the intersection is $(n-i)$-dimensional if and only if $$1 \le k-s < \# ([n]\backslash ( I\cup J ))=n-i.$$ This is exactly why we have $\max\{0,k+i-n\}\le s \le \min\{k-1,i\}$ in the summand when counting the above $i$-tuples. Thus, we have \begin{eqnarray} f_{n-i}(\Delta'_{n,k}) =\binom{n}{i} \sum_{s=\max\{0,k+i-n\}}^{\min\{k-1,i\}}\binom{i}{s}+\binom{n}{i-1} \sum_{s=\max\{0,k+i-n\}}^{\min\{k-1,i-1\}}\binom{i-1}{s}. \label{below} \end{eqnarray} Hence, \begin{eqnarray*} f_j (\Delta'_{n,k}) &=& \binom{n}{j} \sum_{s=\max\{0,k-j\}}^{k-1} \binom{n-j}{s} +\binom{n}{j+1} \sum_{s=\max\{0,k-j\}}^{k-1} \binom{n-j-1}{s}\\ &=& \sum_{s=\max\{0,k-j\}}^{k-1} \left( \binom{n}{j} \binom{n-j}{s} +\binom{n}{j+1} \binom{n-j-1}{s}\right)\\ &=& \sum_{s=\max\{0,k-j\}}^{k-1} \binom{n+1}{j+1,s,n-j-s} \frac{n-s+1}{n+1}\\ &=& \binom{n+1}{j+1} \sum_{s=\max\{0,k-j\}}^{k-1} \binom{n-j}{s} \frac{n-s+1}{n+1}. \end{eqnarray*} \end{proof} \begin{example} {\em Let us take $k=i=2$ for the equation (\ref{below}) in Proof of Theorem \ref{f}. \begin{itemize} \item For $n=3$, we have $\max\{0,k+i-n\}=1$ and ${\min\{k-1,i\}}={\min\{k-1,i-1\}}=1$. So $f_{n-2} (\Delta'_{n,k})=\binom{n}{2}\binom{2}{1}+\binom{n}{1}\binom{1}{1}$. \item For $n>3$, we have $\max\{0,k+i-n\}=0$ and ${\min\{k-1,i\}}={\min\{k-1,i-1\}}=1$. So $f_{n-2}(\Delta'_{n,k})=\binom{n}{2}\left(\binom{2}{0}+\binom{2}{1}\right)+\binom{n}{1}\left(\binom{1}{0}+\binom{1}{1}\right)$. \end{itemize} This matches Example \ref{Boston} we computed. } \end{example} Using the above method, it is not hard to get the $f$-vector of the hypersimplex $\Delta_{n,k}$ from the $f$-vector of the hypersimplex $\Delta'_{n,k}$. \begin{corollary}\label{f-} Let $f(\Delta_{n,k})=(f_{0}(\Delta_{n,k}), \ldots, f_{n}(\Delta_{n,k}))$ be the $f$-vector of the hypersimplex $\Delta_{n,k}$ and let $f(\Delta'_{n,k})=(f_{0}(\Delta'_{n,k}), \ldots, f_{n}(\Delta'_{n,k}))$ be that of the half-open hypersimplex $\Delta'_{n,k}$. Then one has $f_0(\Delta_{n,k}) = \binom{n}{k}+\binom{n}{k-1}$ and $$ f_{j} (\Delta_{n,k}) = f_{j} (\Delta'_{n,k})+ \binom{n}{j+1} \sum_{s=\max\{0,k -1-j\}}^{k-2} \binom{n-j-1}{s}\\ = \binom{n+1}{j+1} \sum_{s=\max\{0,k-j\}}^{k-1} \binom{n-j}{s} $$ for $j = 1,2,\ldots,n$. \end{corollary} \begin{proof} The only difference with the half-open hypersimplex is that there is now one more case for the $i$-tuple $\{h_1,\dots,h_i\}$, which is when one of them is the hyperplane defined by $x_1+\cdots+x_n = k-1$. And the set of such $i$-tuples $\{h_1,\dots,h_i\}$ with $(n-i)$-dimensional intersection with $\Delta_{n,k}$ is exactly the same as the $i$-tuples $\{h_1,\dots,h_i\}$ in the second case of Proof of Theorem \ref{f} for the half-open hypersimplex $\Delta'_{n,k-1}$, i.e., when the hyperplane defined by $x_1+\cdots+x_{n-1}=k-1$ belongs to $\{h_1,\dots,h_i\}$. The number of such $i$-tuples is enumerated by the second summand of the equation (\ref{below}), replacing $k$ by $k-1$. Therefore, we obtain the formula $$f_{n-i} (\Delta_{n,k}) =f_{n-i}(\Delta'_{n,k})+\binom{n}{i-1} \sum_{s=\max\{0,k-1+i-n\}}^{\min\{k-2,i-1\}}\binom{i-1}{s}.$$ Hence \begin{eqnarray*} & & f_{j} (\Delta_{n,k})\\ &=& f_{j}(\Delta'_{n,k}) +\binom{n}{j+1} \sum_{s=\max\{0,k-1-j\}}^{k-2}\binom{n-j-1}{s}\\ &=& \hspace{-0.5cm} \sum_{s=\max\{0,k-j\}}^{k-1} \binom{n+1}{j+1,s,n-j-s} \frac{n-s+1}{n+1} + \sum_{s=\max\{0,k -1-j\}}^{k-2} \binom{n}{j+1, s, n-1-j-s}\\ &=& \hspace{-0.5cm} \sum_{s=\max\{0,k-j\}}^{k-1} \binom{n+1}{j+1,s,n-j-s} \frac{n-s+1}{n+1} + \sum_{s=\max\{0,k -j\}}^{k-1} \binom{n}{j+1, s-1, n-j-s}\\ &=& \hspace{-0.5cm} \sum_{s=\max\{0,k-j\}}^{k-1} \left( \binom{n+1}{j+1,s,n-j-s} + \binom{n}{j+1, s-1, n-j-s} - \binom{n+1}{j+1,s,n-j-s} \frac{s}{n+1} \right)\\ &=& \hspace{-0.5cm} \sum_{s=\max\{0,k-j\}}^{k-1} \binom{n+1}{j+1,s,n-j-s}\\ &=& \binom{n+1}{j+1} \sum_{s=\max\{0,k-j\}}^{k-1} \binom{n-j}{s}, \end{eqnarray*} as desired. \end{proof} \section{Generating functions}\label{gen} Next we discuss generating functions which are related to the $f$-vectors of half-open hypersimplices. \begin{theorem} \label{RS} Let ${f_j}(\Delta'_{n,k})$ denote the number of $j$-faces of $\Delta'_{n,k}$. Then, we have $$ \sum_{n\ge1} \sum_{k=1}^n \sum_{j=1}^n {f_j}(\Delta'_{n,k})\ x^k y^{n-k} t^j = \frac{(1-x)xt}{(1-x-y)(1-x-y-xt)(1-x-y-yt)}. $$ \end{theorem} \begin{proof} The coefficient of $x^k y^{n-k} t^j$ in \begin{eqnarray*} & & \frac{tx(1-x)}{(1-x-y)(1-x-y-tx)(1-x-y-ty)}\\ &=& \frac{tx(1-x)}{(1-x-y)^3} \cdot \frac{1}{1-\frac{tx}{1-x-y}} \cdot \frac{1}{1-\frac{tx}{1-x-y}}\\ &=& \frac{tx(1-x)}{(1-x-y)^3} \left( \sum_{p\ge0} \left( \frac{tx}{1-x-y} \right)^p \right) \left( \sum_{q\ge0} \left( \frac{tx}{1-x-y} \right)^q \right)\\ &=& \frac{tx(1-x)}{(1-x-y)^3} \left( \sum_{p\ge0} \sum_{q\ge0} \left( \frac{t}{1-x-y} \right)^{p+q} x^p y^q \right)\\ &=& \sum_{p\ge0} \sum_{q\ge0} \frac{t^{p+q+1}}{(1-x-y)^{p+q+3}} (1-x) x^{p+1} y^q \end{eqnarray*} is equal to the coefficient of $x^k y^{n-k}$ in $$ \sum_{p=0}^{j-1} \frac{(1-x) x^{p+1} y^{j-p-1}}{(1-x-y)^{j+2}} $$ (since $p+q+1=j$ if and only if $q=j-p-1 \geq 0$). It then follows that \begin{eqnarray*} \sum_{p=0}^{j-1} \frac{(1-x) x^{p+1} y^{j-p-1}}{(1-x-y)^{j+2}} &=& \sum_{p=0}^{j-1} (1-x) x^{p+1} y^{j-p-1} \sum_{r=0}^\infty \binom{j+r+1}{j+1} (x+y)^r\\ &=& \sum_{p=0}^{j-1} \sum_{r\ge0} \sum_{u=0}^r (1-x) x^{p+1} y^{j-p-1} \binom{j+r+1}{j+1} \binom{r}{u} x^u y^{r-u}\\ &=& \sum_{p=0}^{j-1} \sum_{r\ge0} \sum_{u=0}^r \binom{j+r+1}{j+1} \binom{r}{u} x^{p+u+1} y^{j-p+r-u-1}\\ & & - \sum_{p=0}^{j-1} \sum_{r\ge0} \sum_{u=0}^r \binom{j+r+1}{j+1} \binom{r}{u} x^{p+u+2} y^{j-p+r-u-1}. \end{eqnarray*} Note that \begin{itemize} \item $x^{p+u+1} y^{j-p+r-u-1} = x^k y^{n-k}$ if and only if $p+u+1=k$ and $j+r=n$ ; \item $x^{p+u+2} y^{j-p+r-u-1} = x^k y^{n-k}$ if and only if $p+u+2=k$ and $j+r+1=n$. \end{itemize} Thus, the coefficient of $x^k y^{n-k}$ is \begin{eqnarray*} & & \sum_{p=0}^{j-1} \sum_{r=n-j} \sum_{u=k-p-1} \binom{j+r+1}{j+1} \binom{r}{u} - \sum_{p=0}^{j-1} \sum_{r=n-j-1} \sum_{u=k-p-2} \binom{j+r+1}{j+1} \binom{r}{u}\\ &=& \sum_{p=\max\{0,k-1-n+j\}}^{\min\{j-1,k-1\}} \binom{n+1}{j+1} \binom{n-j}{k-p-1} - \sum_{p=\max\{0,k-1-n+j\}}^{\min\{j-1,k-1\}} \binom{n}{j+1} \binom{n-j-1}{k-p-2}\\ &=& \sum_{s=\max\{0,k-j\}}^{\min\{k-1,n-j\}} \binom{n+1}{j+1} \binom{n-j}{s} - \sum_{s=\max\{0,k-j\}}^{\min\{k-1,n-j\}} \binom{n}{j+1} \binom{n-j-1}{s-1}\\ &=& \binom{n+1}{j+1} \sum_{s=\max\{0,k-j\}}^{\min\{k-1,n-j\}} \left( \binom{n-j}{s} - \frac{n-j}{n+1} \binom{n-j-1}{s-1} \right)\\ &=& \binom{n+1}{j+1} \sum_{s=\max\{0,k-j\}}^{\min\{k-1,n-j\}} \binom{n-j}{s} \frac{n-s+1}{n+1}, \end{eqnarray*} as desired. \end{proof} By the proof of Theorem \ref{RS}, we can show that \begin{corollary} Let $f_j (\Delta_{n,k})$ denote the number of $j$-faces of $\Delta_{n,k}$. Then, we have $$ \sum_{n\ge1} \sum_{k=1}^n \sum_{j=1}^n f_j (\Delta_{n,k})\ x^k y^{n-k} t^j = \frac{xt}{(1-x-y)(1-x-y-xt)(1-x-y-yt)}. $$ \end{corollary} On the other hand, by Theorem \ref{RS}, we have the $f$-vector of the hypersimplicial decomposition of the unit cube, and its generating function. \begin{theorem}\label{sum} Let ${f_j} (\Delta'_{n,k})$ denote the number of $j$-faces of the half-open hypersimplex $\Delta'_{n,k}$. Then, we have $$ \sum_{k=1}^n {f_j} (\Delta'_{n,k}) = j \cdot 2^{n-j-1} \frac{n+j+2}{n+1} \cdot \binom{n+1}{j+1} $$ and $$ \sum_{n\ge1} \sum_{k=1}^n {f_j} (\Delta'_{n,k})\ x^n = \frac{j x^j(1-x)}{(1-2x)^{j+2}} .$$ \end{theorem} \begin{proof} By substituting $x$ for $y$ in the equation of Theorem \ref{RS}, we have \begin{eqnarray*} \sum_{n\ge1} \sum_{k=1}^n \sum_{j=1}^n {f_j} (\Delta'_{n,k})\ x^n t^j &=& \frac{(1-x)xt}{(1-2x)(1-2x-xt)^2}\\ &=& \frac{(1-x)xt}{(1-2x)^3(1-\frac{x}{1-2x} t)^2}\\ &=& \frac{(1-x)xt}{(1-2x)^3} \sum_{j\ge 0} (j+1) \left(\frac{x}{1-2x}\right)^j t^j. \end{eqnarray*} Thus, we have $$ \sum_{n\ge 1} \sum_{k=1}^n {f_j} (\Delta'_{n,k}) x^n = \frac{x(1-x)}{(1-2x)^3} \cdot j \left(\frac{x}{1-2x}\right)^{j-1} = \frac{j x^j(1-x)}{(1-2x)^{j+2}} .$$ Moreover, the coefficient of $x^n$ in \begin{eqnarray*} \frac{j x^j(1-x)}{(1-2x)^{j+2}} &=& j x^j(1-x) \sum_{m\ge 0} \binom{m+j+1}{j+1} 2^m x^m\\ &=& j \sum_{m\ge 0} \binom{m+j+1}{j+1} 2^m x^{m+j} - j \sum_{m\ge 0} \binom{m+j+1}{j+1} 2^m x^{m+j+1}\\ &=& j \sum_{m\ge 0} \binom{m+j+1}{j+1} 2^m x^{m+j} - j \sum_{m\ge 0} \binom{m+j}{j+1} 2^{m-1} x^{m+j}\\ &=& j \sum_{m\ge 0} \left( 2 \binom{m+j+1}{j+1} - \binom{m+j}{j+1} \right) 2^{m-1} x^{m+j} \\ &=& j \sum_{m\ge 0} \frac{m+2j+2}{m+j+1} \binom{m+j+1}{j+1} 2^{m-1} x^{m+j} \end{eqnarray*} is $$ j \frac{(n-j)+2j+2}{(n-j)+j+1} \binom{(n-j)+j+1}{j+1} 2^{(n-j)-1} = j \cdot 2^{n-j-1} \frac{n+j+2}{n+1} \cdot \binom{n+1}{j+1}.$$ \end{proof} \begin{proof}[Geometric proof of Theorem \ref{sum}] The first equation of Theorem \ref{sum} gives the $f$-vector of the hypersimplicial decomposition of the unit cube. Here we compute this $f$-vector directly. Similar as the proof of Theorem \ref{f}, for ${f_j} (\Delta'_{n,k})$, we count the $j$-dimensional intersections obtained by $(n-j)$ hyperplanes of the unit cube. There are again two types of such $j$-faces: \begin{enumerate} \item Intersections of $n-j$ hyperplanes of the form $\HH_i^{(0)}$ or $\HH_j^{(1)}$. There are $2^{n-j}\binom{n}{n-j}$; \item Intersections of $n-j-1$ hyperplanes of the form $\HH_i^{(0)}$ or $\HH_j^{(1)}$ together with one more hyperplane defined by $\sum_{i=1}^nx_i =k$. Similar to the argument in the proof of Theorem \ref{f}, we can see that each combination of the $n-j-1$ hyperplanes intersects nontrivially (i.e., get $j$-dimensional intersection) with exactly $j$ hyperplanes of the form $\sum_{i=1}^nx_i =k$. In fact, for a given choice of $n-j-1$ hyperplanes of the form $\HH_i^{(0)}$ or $\HH_j^{(1)}$, let $s$ be the number of indices $m$ with $\HH_m^{(1)}$, then above $j$ hyperplanes correspond to $k=s+1,\dots,s+j$. Therefore, there are $j\cdot2^{n-j-1}\binom{n}{n-j-1}$ such $j$-faces. \end{enumerate} Now comes a tricky part: the correct number of first type $j$-faces should be $2^{n-j}\binom{n}{n-j}$ times $j$. This is because there are exactly $(j-1)$ $(j-1)$-faces in the interior of each such $j$-faces, resulting in $j$ $j$-faces. Consider $f_2$ for the three dimensional cube for a visual help. Therefore, there are in total $$2^{n-j}\binom{n}{n-j}\cdot j + j\cdot2^{n-j-1}\binom{n}{n-j-1} = j \cdot 2^{n-j-1} \frac{n+j+2}{n+1} \cdot \binom{n+1}{j+1}$$ $j$-faces in the hypersimplicial decomposition of the unit cube. \end{proof} \section{Two open questions}\label{open} In this section, we present two open questions related with Theorem \ref{sum}. First, notice that in the above geometric proof for Theorem \ref{sum}, we get the result as a sum of two parts. Since the result of Theorem \ref{sum} is neat and simple, it would be very nice to have a direct combinatorial proof avoiding sums. \begin{question} {\em Find a combinatorial proof for Theorem \ref{sum}. } \end{question} We also observe a relation between Theorem \ref{sum} and the coefficients of Chebyshev polynomials. It is known that, for $\ell >0$, the Chebyshev polynomials $ T_\ell(x)$ of the first kind satisfies \begin{eqnarray*} T_\ell(x) &=& \frac{\ell}{2} \sum_{m=0}^{\lfloor \frac{\ell}{2} \rfloor} (-1)^m \frac{(\ell -m -1)!}{m!(\ell -2m)!} (2 x)^{\ell -2m}\\ &=& \sum_{m=0}^{\lfloor \frac{\ell}{2} \rfloor} (-1)^m \frac{\ell}{\ell -m} \binom{\ell-m}{m} 2^{\ell -2m-1} x^{\ell -2m}. \end{eqnarray*} On the other hand, we proved that $$ \frac{1}{j} \sum_{k=1}^n {f_{j}} (\Delta'_{n,k}) = 2^{n-j-1} \frac{n+j+2}{n+1} \binom{n+1}{j+1} .$$ Thus, for $j =m-1$ and $n=\ell-m-1$, we have $$ \frac{1}{j} \sum_{k=1}^n {f_{j}} (\Delta'_{n,k}) = 2^{\ell -2m-1} \frac{\ell}{\ell-m} \binom{\ell -m}{m} $$ which is the absolute value of the coefficient of $x^{\ell-2m}$ in $T_\ell(x)$. There are some known combinatorial models for Chebyshev polynomials such as \cite{BW,M, S}, but their connection with $f$-vectors studied here is not clear to us. \begin{question} {\em Find a combinatorial connection between Chebyshev polynomials and the sum of $f$-vectors for the half-open hypersimplex, or equivalently, the $f$-vectors of the hypersimplicial decomposition of the unit cube. } \end{question} \section{Acknowledgment} We want to thank Professor Richard Stanley for very helpful comments on our work. \begin{thebibliography}{9} \bibitem{BW} A. Benjamin and D. Walton, Counting on Chebyshev polynomials, {\em Math. Mag.} {\bf 82} (2009) 117--126. \bibitem{DST} J. De Loera, B. Sturmfels and R. Thomas, Gr\"{o}bner bases and triangulations of the second hypersimplex, {\em Combinatorica} {\bf 15} (1995) 409--424. \bibitem{Kat} M. Katzmann, The Hilbert series of algebras of Veronese type, {\em Comm. Algebra} {\bf 33} (2005) 1141--1146. \bibitem{LP} T. Lam and A. Postnikov, Alcoved polytopes I, {\em Discrete Comput. Geom.} {\bf 38} (2007) 453--478. \bibitem{L} N. Li, Ehrhart $h^*$-vectors of hypersimplices, {\em Discrete Comput. Geom.} {\bf 48} (2012) 847--878. \bibitem{M} E. Munarini, A combinatorial interpretation of the Chebyshev polynomials, {\em SIAM J. Discrete Math.} {\bf 20} (2006), 649--655. \bibitem{S} L. Shapiro, A combinatorial proof of a Chebyshev polynomial identity, {\em Discrete Math.} {\bf 34} (1981) 203--206. \bibitem{Sta} R. Stanley, Eulerian partitions of a unit hypercube, in M.~Aigner, ed., {\em Higher Combinatorics}, Reidel, 1977. \bibitem{Ziegler} G. M. Ziegler, Discrete Geometry, available at \\ \url{http://www3.math.tu-berlin.de/Vorlesungen/SS08/DiskreGeom/exercises/ex08.pdf}. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 05A15; Secondary 52B05. \noindent \emph{Keywords: } half-open hypersimplex, $f$-vector, generating function. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received October 13 2014; revised version received May 29 2015. Published in {\it Journal of Integer Sequences}, June 3 2015. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .