\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf The Inverse Problem on Subset Sums, II } \vskip 1cm \large Jian-Dong Wu\footnote{This work is supported by the National Natural Science Foundation of China (Grant No.\ 11371195) and the Program of Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No.\ 13KJD110005).}\\ School of Mathematical Sciences and Institute of Mathematics\\ Nanjing Normal University\\ Nanjing 210023\\ P. R. China\\ \href{mailto:wujiandong@njnu.edu.cn}{\tt wujiandong@njnu.edu.cn} \end{center} \vskip .2 in \begin{abstract} For a set $T$ of integers, let $P(T)$ be the set of all finite subset sums of $T$, and let $T(x)$ be the set of all integers of $T$ not exceeding $x$. Let $B=\{b_{1}d_n$ for all $n\ge 1$, then there exists a sequence of positive integers $A=\{a_{1}d_n$ for all $n\not= m$, then there is no such sequence $A$. We also pose a problem for further research. \end{abstract} \section{Introduction} For a sequence of integers $A=\{a_{1}b_0$ and $b_{n+1}\geq b_{n}^2$ for all $n\geq 1$, then there exists an $A$ such that $P(A)=\mathbb{N}\setminus B$. Hegyv\'{a}ri \cite{H} proved that if $b_{1}\geq b_0$ and $b_{n+1}\geq 5b_{n}$ for all $n\geq 1$, then such $A$ exists. The condition $b_{n+1}\geq 5b_{n}$ has been improved to $b_{n+1}\geq 3b_{n}+5$ by Chen and Fang \cite{C}. Recently, Chen and the author \cite{CW} proved that, if $B=\{b_{1}3b_{n}-b_{n-2}$ for all $n\geq 3$, then there exists a sequence of positive integers $A=\{a_{1}d_n$ for all $n\ge 1$, then there exists a sequence of positive integers $A=\{a_{1}d_n$ for all $n\not= m$, then, for any sequence of positive integers $A=\{a_{1}2b_{m-1}-b_{m-2}$, then $2b_{m-1}-b_{m-2}\notin P(A)$, a contradiction. Hence $a_{m'+1}\leq 2b_{m-1}-b_{m-2}$. By $a_{m'+1}\notin A\cap[0,b_{m-1}]$, we have $a_{m'+1}>b_{m-1}$. \bigskip {\bf Case 1:} $a_{m'+1}=b_{m-1}+1$. Similar to the arguments in \cite{C} and \cite{CW}, we have $$P(A(b_{m-1})\cup \{a_{m'+1}\})=[0,b_{m}-1]\setminus B_{m,2},$$ where $B_{m,2}=\{b_k, b_{m}-1-b_k : 1\le k\le m-1\}$. Thus \begin{eqnarray*} a_{m'+2}+P(A(b_{m-1})\cup \{a_{m'+1}\})=[a_{m'+2}, a_{m'+2}+b_{m}-1]\setminus B_{m,3}, \end{eqnarray*} where $B_{m,3}=\{a_{m'+2}+b_k,a_{m'+2}+b_{m}-1-b_k : 1\le k\le m-1\}$. If $a_{m'+2}\le b_{m}-1-b_{m-1}$, then $$b_{m}\in [a_{m'+2}, a_{m'+2}+b_{m}-1],\quad a_{m'+2}+b_{m-1} b_{m}-1-b_{m-1}$, then, by $b_{m}-1-b_{m-1}\notin P(A(b_{m-1})\cup \{a_{m'+1}\})$, we have $b_{m}-1-b_{m-1}\notin P(A)$, a contradiction. \bigskip {\bf Case 2:} $b_{m-1}+2\leq a_{m'+1}\leq 2b_{m-1}-b_{m-2}.$ By $b_{m}\in [a_{m'+1},a_{m'+1}+2b_{m-1}]$ and $a_{m'+1}+b_{m-1}\leq 3b_{m-1}-b_{m-2} 3b_{m-2}+2$. Hence $2b_{m-1}-b_u\neq a_{m'+1}+b_v$$(1\leq u,\ v\leq m-2)$ and then $$ P(A(b_{m-1})\cup \{a_{m'+1}\})=[0,b_{m}+b_{u_0}]\setminus \{ b_k, b_{m}+b_{u_0}-b_k : 1\le k\le m-1\}. $$ Thus, for $i\ge 2$, we have $$ a_{m'+i}+P(A(b_{m-1})\cup \{a_{m'+1}\})=[a_{m'+i},a_{m'+i}+b_{m}+b_{u_0}]\setminus B_{m,4}, $$ where $B_{m,4}=\{a_{m'+i}+b_k,a_{m'+i}+b_{m}+b_{u_0}-b_k : 1\le k\le m-1\}$. If $a_{m'+2}>b_{m}+b_{u_0}-b_{m-1}$, then $b_{m}+b_{u_0}-b_{m-1}\notin P(A)$, a contradiction. So $b_{m-1}+b_{u_0}+2=a_{m'+1}b_{m}+b_{u_0}-b_{m-1}$. Thus \begin{eqnarray*}&&b_{m}+b_{u_0}-b_{m-1}=a_{m'+i}+b_{u_0}\\ &\notin & (P(A(b_{m-1})\cup \{a_{m'+1}\}))\cup (a_{m'+i}+P(A(b_{m-1})\cup \{a_{m'+1}\}))\\ &=& P(A(b_{m-1})\cup \{a_{m'+1},a_{m'+2}\}).\end{eqnarray*} By $a_{m'+3}>b_{m}+b_{u_0}-b_{m-1}$, we have $b_{m}+b_{u_0}-b_{m-1}\notin P(A)$, a contradiction. This completes the proof of Theorem \ref{thm1} (ii). \section{Acknowledgments} I sincerely thank my supervisor Professor Yong-Gao Chen for his valuable suggestions and useful discussions. I am also grateful to the referee for his/her valuable comments. \begin{thebibliography}{10} \bibitem{B} S. A. Burr, in: P. Erd\H{o}s, A. R\'{e}nyi, V. T. S\'{o}s, eds., \emph{Combinatorial Theory and its Applications III}, Coll. Math. Soc. J. Bolyai, Vol.~4, North-Holland, 1970, p.\ 1155. \bibitem{C} Y. G. Chen and J. H. Fang, On a problem in additive number theory, \emph{Acta Math. Hungar.} \textbf{134} (2012), 416--430. \bibitem{CW} Y. G. Chen and J. D. Wu, The inverse problem on subset sums, \emph{European J. Combin.} \textbf{34} (2013), 841--845. \bibitem{H} N. Hegyv\'{a}ri, On representation problems in the additive number theory, \emph{Acta Math. Hungar.} \textbf{72} (1996), 35--44. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11B13. \noindent \emph{Keywords: } subset sum, representation problem, Burr's problem, complement. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received May 7 2013; revised version received September 5 2013. Published in {\it Journal of Integer Sequences}, October 12 2013. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .