\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{problem}[theorem]{Problem} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Can the Arithmetic Derivative be Defined on \\ \vskip .1in a Non-Unique Factorization Domain?} \vskip 1cm \large Pentti Haukkanen, Mika Mattila, and Jorma K. Merikoski \\ School of Information Sciences \\ FI-33014 University of Tampere\\ Finland\\ \href{mailto:pentti.haukkanen@uta.fi}{\tt pentti.haukkanen@uta.fi} \\ \href{mailto:mika.mattila@uta.fi}{\tt mika.mattila@uta.fi} \\ \href{mailto:jorma.merikoski@uta.fi}{\tt jorma.merikoski@uta.fi} \\ \ \\ Timo Tossavainen\\ School of Applied Educational Science and Teacher Education\\ University of Eastern Finland\\ P.O. Box 86 \\ FI-57101 Savonlinna \\ Finland \\ \href{mailto:timo.tossavainen@uef.fi}{\tt timo.tossavainen@uef.fi} \end{center} \vskip .2 in \begin{abstract} Given $n\in\mathbb{Z}$, its arithmetic derivative $n'$ is defined as follows: (i)~$0'=1'=(-1)'=0$. (ii)~If $n=up_1\cdots p_k$, where $u=\pm 1$ and $p_1,\dots,p_k$ are primes (some of them possibly equal), then $$ n'=n\sum_{j=1}^k\frac{1}{p_j}=u\sum_{j=1}^kp_1\cdots p_{j-1}p_{j+1}\cdots p_k. $$ An analogous definition can be given in any unique factorization domain. What about the converse? Can the arithmetic derivative be (well-)defined on a non-unique factorization domain? In the general case, this remains to be seen, but we answer the question negatively for the integers of certain quadratic fields. We also give a sufficient condition under which the answer is negative. \end{abstract} \section{The arithmetic derivative} Let $n\in\mathbb{Z}$. Its arithmetic derivative $n'$ (\seqnum{A003415} in \cite{Sl}) is defined~\cite{Ba,UA} as follows: \medskip \noindent (i)~$0'=1'=(-1)'=0$. \medskip \noindent (ii)~If $n=up_1\cdots p_k$, where $u=\pm 1$ and $p_1,\dots,p_k\in\mathbb{P}$, the set of primes, (some of them possibly equal), then \begin{eqnarray} \label{zder} n'=n\sum_{j=1}^k\frac{1}{p_j}=u\sum_{j=1}^kp_1\cdots p_{j-1}p_{j+1}\cdots p_k. \end{eqnarray} If $k=1$, we set $p_1\cdots p_{k-1}p_{k+1}\cdots p_k=1$ in the last expression. \medskip A few basic properties of $n'$ follow: \begin{eqnarray*} \forall p\in\mathbb{P}: p'=1,\qquad\qquad \\ \forall n\in\mathbb{Z}: (-n)'=-n',\qquad \\ \forall m,n\in\mathbb{Z}: (mn)'=m'n+mn'. \end{eqnarray*} The third equality is called the Leibniz rule. Moreover, $f(n)=n'$ is the only mapping $\mathbb{Z}\to\mathbb{Z}$ having these properties. For details, see~\cite[Theorems~1 and~13]{UA}. Kovi\v c~\cite[Proposition~1]{Ko} studied how to extend $f$ to $\mathbb{Q}(i)=\{a+bi\,|\,a,b\in\mathbb{Q}\}$. Ufnarovski and \AA hlander~\cite[Section~10]{UA} outlined how to define the arithmetic derivative on a unique factorization domain (UFD from now on). We begin by performing this task in detail. To that end, we follow the terminology of~\cite[Section~6.5]{Co}. Let $D$ be a UFD. First, we must decide what atoms (irreducible elements) are \lq\lq positive\rq\rq. Write $\cal P$ for a set of atoms of~$D$ such that every atom of~$D$ is associated with one and only one element of~$\cal P$. Call $\cal P$ the set of positive atoms. Further, denote by~$\cal U$ the set of units of~$D$. Given $a\in D$, we define its arithmetic derivative $a'$ as follows: If $a=0$ or $a\in\cal U$, then $a'=0$. Otherwise, there are unique (up to the ordering) $p_1,\dots,p_k\in\cal P$ (some of them possibly equal) and $u\in\cal U$ such that $$ a=up_1\cdots p_k. $$ Then \begin{eqnarray} \label{ufdder} a'=u\sum_{j=1}^kp_1\cdots p_{j-1}p_{j+1}\cdots p_k. \end{eqnarray} To be precise, we should actually write $a'_{\cal P}$ (or something like that) for the derivative of $a$, since $a'$ depends on $\cal P$. However, for the simplicity of notation, we will omit this practice if there is no need to emphasize~$\cal P$. The given definition implies the analogous equalities as above: \begin{eqnarray*} \forall p\in{\cal P}: p'=1,\qquad \\ \forall v\in{\cal U},a\in D: (va)'=va', \\ \forall a,b\in D: (ab)'=a'b+ab'. \end{eqnarray*} Again, $f(x)=x'$ is the only mapping $D\to D$ with these properties. \begin{example} Let~$D=\mathbb{Z}$. If ${\cal P_\text{1}}=\mathbb{P}$, we obtain the ordinary arithmetic derivative defined above. For example, because $30=2\cdot 3\cdot 5$, we have $30'_{\cal P_\text{1}}=30'=3\cdot 5+2\cdot 5+2\cdot 3=31$. Obviously, another selection of positive atoms results in a different derivative function. For instance, if ${\cal P_\text{2}}=\{2,-3,5,-7,11,\dots\}$, then $30=(-1)\cdot 2\cdot(-3)\cdot 5$ and $30'_{\cal P_\text{2}}=(-1)\cdot[(-3)\cdot 5+2\cdot 5+2\cdot(-3)]=11$. \end{example} \begin{example} Let $D$ be an arbitrary field~$F$. Since all nonzero elements of~$F$ are units, then ${\cal P}=\emptyset$ and, hence, $a'=0$ for all $a\in F$. \end{example} \begin{example} To give an example of a nontrivial derivative on the field~$\mathbb{Q}$, we define \cite[Theorem~14]{UA} \begin{eqnarray} \label{ratioder} \Big(\frac{m}{n}\Big)'=\frac{m'n-mn'}{n^2}. \end{eqnarray} Here $m,n\in\mathbb{Z}$, $n\ne 0$, and $m'$ and $n'$ are ordinary arithmetic derivatives on~$\mathbb{Z}$. An analogous definition can be given in the division field of any UFD. \end{example} Let us summarize the above discussion. \begin{proposition} ${ }$ \medskip \noindent $(\mathrm{i})$ Let $D$ be a {\rm UFD}. The mapping $f(a)=a'_{\cal P}$ defined on~$D$ by~{\rm(\ref{ufdder})} is an arithmetic derivative. It depends on the chosen set~$\cal P$ of positive atoms. \medskip \noindent $(\mathrm{ii})$ The mapping $g(a)=a'$ defined on~$\mathbb{Q}$ by~{\rm(\ref{ratioder})} is an extension of the mapping $f(a)=a'$ defined on~$\mathbb{Z}$ by~{\rm(\ref{zder})}. Similarly, {\rm(\ref{ufdder})} can be extended to the division field of~$D$. \end{proposition} \section{ A problem and its partial answers} If a factorization domain (FD in the sequel) is not a UFD, we call it a non-unique factorization domain (NUFD in the sequel). We saw above that the arithmetic derivative can be defined on any UFD. What about the converse? \begin{problem} \label{probl} Is it possible to define an arithmetic derivative on some {\rm NUFD}? \end{problem} \noindent The next theorem gives a partial answer which is negative. In the following, we mostly apply the same terminology and notation as in \cite[Chapter~4]{ST}. \begin{theorem} \label{thm} Let $D_m$ be the integral domain of integers of~$\mathbb{Q}(\sqrt{m})$, where $m\in\mathbb{Z}\backslash\{1\}$ is squarefree {\rm(\seqnum{A005117}} in \rm{\cite{Sl})}. {\it If $m$ satisfies \begin{eqnarray} \label{m} m\not\equiv 1\,(\mathrm{mod}\,4)\,\mathrm{and}\,m<-2, \end{eqnarray} then either $1-m$ or $4-m$ does not have a well-defined derivative as an element of~$D_m$}. \end{theorem} \begin{proof} Clearly, $D_m$ is an FD, yet it is not a UFD, see \cite[p.~93]{ST} or \cite[Theorem (actually, in Finnish: Lause)~4.23]{Va}. We modify and enhance the argument used in the latter reference. \medskip \noindent {\it Case~1}. $m\equiv 3\,(\mathrm{mod}\,4)$. Then $m$ is odd and $m\le -5$. Since $1-m$ is even and greater than five, it is a composite number (when considered as a positive integer) and expressible as \begin{eqnarray} \label{factor11} 1-m=p_1\cdots p_k, \end{eqnarray} where $k\ge 2$ and $p_1,\dots,p_k\in\mathbb{P}$ with $2=p_1\le\dots\le p_k$. On the other hand, \begin{eqnarray} \label{factor12} 1-m=(1-\sqrt{m})(1+\sqrt{m}). \end{eqnarray} We will see later that the factors of the right-hand sides of both~(\ref{factor11}) and~(\ref{factor12}) are atoms in~$D_m$. Next, if some of the $p_j$'s in~(\ref{factor11}) are equal, we omit their repetition; let $\{p_{j_1},\dots,p_{j_h}\}$ be the set obtained so. Since the only units of~$D_m$ are $\pm 1$, see \cite[Proposition~4.2]{ST} or \cite[Lause~4.8]{Va}, the atoms $p_{j_1},\dots,p_{j_h}$, $1-\sqrt{m}$, $1+\sqrt{m}$ are pairwise non-associated. Assume first that $\cal P$ is such that \begin{eqnarray} \label{p} p_{j_1},\dots,p_{j_h},1-\sqrt{m},1+\sqrt{m}\in\cal P. \end{eqnarray} If $(1-m)'$ exists, then, by~(\ref{factor12}), $$ (1-m)'=1+\sqrt{m}+1-\sqrt{m}=2. $$ On the other hand, (\ref{factor11}) implies that $$ (1-m)'=p_2\cdots p_k+\dots+p_1\cdots p_{k-1}\ge p_2+p_1\ge 2+2=4 $$ which contradicts the previous conclusion. So, $(1-m)'$ is not well-defined under~(\ref{p}). Second, if (\ref{p}) does not hold, we anyway have $$ \pm p_{j_1},\dots,\pm p_{j_h},\pm(1-\sqrt{m}),\pm(1+\sqrt{m})\in\cal P $$ with an appropriate selection of signs. Hence a simple modification of the above argument is sufficient to show that the derivative of $1-m$ is not well-definable. \medskip \noindent {\it Case~2}. $m\equiv 2\,(\mathrm{mod}\,4)$. Now $m$ is even and $m\le -6$. Thus, $4-m$ is also an even composite number such that $4-m\ge 10$. So, again \begin{eqnarray} \label{factor21} 4-m=p_1\cdots p_k, \end{eqnarray} where $k$ and $p_1,\dots,p_k$ are as described above. On the other hand, \begin{eqnarray} \label{factor22} 4-m=(2-\sqrt{m})(2+\sqrt{m}). \end{eqnarray} The factors of the right-hand sides of~(\ref{factor21}) and~(\ref{factor22}) are atoms in~$D_m$, see below. We continue similarly as in Case~1 only replacing $1\pm\sqrt{m}$ with $2\pm\sqrt{m}$. So, assume first that \begin{eqnarray} \label{p_2} p_{j_1},\dots,p_{j_h},2-\sqrt{m},2+\sqrt{m}\in\cal P. \end{eqnarray} If $(4-m)'$ exists, then $ (4-m)'=2+\sqrt{m}+2-\sqrt{m}=4 $ by~(\ref{factor22}). However, we have $k>2$ or $p_k>2$, since otherwise $4-m=2\cdot 2=4$ contradicting the assumption $m\le -6$. By~(\ref{factor21}), we encounter a dilemma in both cases; if $k>2$, then $$ (4-m)'\ge p_2p_3+p_1p_3+p_1p_2\ge 4+4+4=12, $$ and $$ (4-m)'\ge p_{k-1}+p_k\ge 2+3=5 $$ if $p_k>2$. Consequently, $(1-m)'$ is not well-defined under~(\ref{p_2}). If $\cal P$ does not satisfy this condition, an analogous argument as at the end of Case~1 applies again. \medskip To complete the proof, we still have to verify that the factors of the right-hand sides of (\ref{factor11}), (\ref{factor12}), (\ref{factor21}) and (\ref{factor22}) are atoms. We do so by using the norm function. We begin by noticing that $D_m=\mathbb{Z}(\sqrt{m})=\{x+y\sqrt{m}\,|\,x,y\in\mathbb{Z}\}$, see \cite[Theorem~3.2]{ST} or \cite[Theorem~4.2]{Va}. An element $a=x+y\sqrt{m}\in D_m$ is rational if $y=0$ and irrational if $y\ne 0$. If $a$ is irrational, then, recalling that $m$ is negative, we have $$ N(a)=x^2-my^2=x^2+|m|y^2\ge |m|. $$ If also $b\in D_m$ is irrational, then \begin{eqnarray} \label{ab} N(ab)=N(a)N(b)\ge m^2. \end{eqnarray} Let $c\in D_m$ so that $c\ne 0,\pm 1$. If $c=ab$ where $a$ and $b$ are irrational, then $N(c)\ge m^2$ by~(\ref{ab}). Therefore, $c$ is an atom if the following two conditions are satisfied: (i)~$c$ has no rational atom divisor (except possibly $\pm c$) and (ii)~$N(c)1$ may be even more difficult since, according to our knowledge, it is not completely understood which $m$'s yield a UFD and which do not. Obviously, an alternative way to try to advance is to study NUFD's different from those described above. \section{Acknowledgment} We thank the referee for valuable remarks, in particular for those that led us to formulate Theorem~\ref{twofact} and Problem~\ref{probltwofact}. \begin{thebibliography}{9} \bibitem{Ba} E.~J.~Barbeau, Remark on an arithmetic derivative, {\it Canad. Math. Bull.}~\textbf{4} (1961), 117--122. \bibitem{Co} P.~M.~Cohn, {\it Algebra, Volume~1}, John Wiley, 1974. \bibitem{Ko} J.~Kovi\v c, The arithmetic derivative and antiderivative, {\it J. Integer Seq.}~\textbf{15} (2012), \href{https://cs.uwaterloo.ca/journals/JIS/VOL15/Kovic/kovic4.html}{Article~12.3.8}. \bibitem{Sl} N. J. A. Sloane, {\it The On-Line Encyclopedia of Integer Sequences}, \href{http://oeis.org}{http://oeis.org}. \bibitem{ST} I.~N.~Stewart and D.~O.~Tall, {\it Algebraic Number Theory}, Second Edition, Chapman and Hall, 1987. \bibitem{UA} V.~Ufnarovski and B.~\AA hlander, How to differentiate a number, {\it J. Integer Seq.}~\textbf{6} (2003), \href{http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Ufnarovski/ufnarovski.html}{Article 03.3.4}. \bibitem{Va} K.~V\"ais\"al\"a, {\it Lukuteorian ja korkeamman algebran alkeet} [in Finnish], Otava, 1950. \end{thebibliography} %****************** \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification:} Primary 11A25; Secondary 11A51, 11R27. \noindent {\it Keywords:} arithmetic derivative, unique factorization, non-unique factorization, quadratic field. \bigskip \hrule \bigskip \noindent (Concerned with sequences \seqnum{A000040}, \seqnum{A003415} and \seqnum{A005117}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received October 30 2012; revised version received January 1 2013. Published in {\it Journal of Integer Sequences}, January 1 2013. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .