\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Exponential Sums Involving the $k$-th Largest \\ \vskip .1in Prime Factor Function } \vskip 1cm \large Jean-Marie~De~Koninck \\ D\'epartement de Math\'ematiques \\ Universit\'e Laval \\ Qu\'ebec G1V 0A6 \\ Canada \\ \href{mailto:jmdk@mat.ulaval.ca}{\tt jmdk@mat.ulaval.ca} \\ \ \\ Imre K\'atai\\ Computer Algebra Department\\ E\"otv\"os Lor\'and University \\ 1117 Budapest\\ P\'azm\'any P\'eter S\'et\'any I/C \\ Hungary \\ \href{mailto:katai@compalg.inf.elte.hu}{\tt katai@compalg.inf.elte.hu} \\ \end{center} \vskip .2 in \def\N{{\mathbb N}} \def\Z{{\mathbb Z}} \def\R{{\mathbb R}} \def\C{{\mathbb C}} \def\Q{{\mathbb Q}} \centerline{\it Dedicated to Jean-Paul Allouche on the occasion of his $60^{th}$ birthday} \begin{abstract} Letting $P_k(n)$ stand for the $k$-th largest prime factor of $n\ge 2$ and given an irrational number $\alpha$ and a multiplicative function $f$ such that $|f(n)|=1$ for all positive integers $n$, we prove that $\sum_{n\le x} f(n) \exp\{2\pi i \alpha P_k(n)\}=o(x)$ as $x\to \infty$. \end{abstract} \section{Introduction} In 1954, Vinogradov \cite{kn:vin} showed that, given any irrational number $\alpha$, if $p_10$. In 1968, Hal\'asz \cite{kn:hal} established the following result. \begin{lemma}[Hal\'asz's theorem] \label{lem:1} Let $f$ be a complex-valued multiplicative arithmetical function such that $|f(n)|\le 1$ for all positive integers $n$. The following two statements hold: \begin{enumerate} \item[(a)] If there exists a real number $\tau_0$ for which the series $$ \sum_p \frac{1-\Re(f(p)/p^{i\tau_0})}p $$ is convergent, then, as $x\to \infty$, $$\sum_{n\le x} f(n) = x \cdot \frac{x^{i\tau_0}}{1+\i \tau_0} \prod_{p\le x} \left(1-\frac 1p \right) \left(1+ \sum_{r=1}^\infty \frac{f(p^r)}{p^{r(1+i\tau_0)}} \right) +o(x).$$ \item[(b)] If the series $$ \sum_p \frac{1-\Re(f(p)/p^{i\tau})}p $$ is divergent for every real number $\tau$, then $$\sum_{n\le x} f(n) = o(x) \qquad \mbox{as } x\to \infty.$$ \end{enumerate} \end{lemma} \begin{proof} For a proof, see the book of Schwarz and Spilker (\cite[Thm.\ 3.1]{kn:spilker}). \end{proof} Fix an integer $k\ge 2$ and for each real number $\tau$, let $$R_\tau(x) := \sum_{n \le x} f(n)n^{i\tau} e(\alpha P_k(n)).$$ We then have the following result. \begin{lemma} \label{lem:2} Let $\tau_1,\tau_2\in \R$. Then, as $x\to \infty$, \begin{equation} \label{eq:lim} \mbox{(a)}\quad R_{\tau_1}(x) =o(x) \qquad \Longleftrightarrow \qquad \mbox{(b)}\quad R_{\tau_2}(x) =o(x). \end{equation} \begin{proof} It is clear that (a) holds if and only if, given any $\varepsilon>0$, $$\frac 1{\varepsilon x} \sum_{x\le n \le (1+\varepsilon) x} f(n) n^{i\tau_1} e(\alpha P_k(n)) \to 0\quad \mbox{ as } x\to \infty,$$ while (b) holds if and only if, given any $\varepsilon>0$, $$\frac 1{\varepsilon x} \sum_{x\le n \le (1+\varepsilon) x} f(n) n^{i\tau_2} e(\alpha P_k(n)) \to 0\quad \mbox{ as } x\to \infty.$$ But since each $n\in [x,(1+\varepsilon) x]$ can be written as $n=x+\delta x$ for some $0\le \delta \le \varepsilon$, we have $$n^{i\tau_2}=(x+ \delta x)^{i\tau_2}= x^{i\tau_2} \left( 1 + \delta \right)^{i\tau_2} = x^{i\tau_2} (1+ O(\varepsilon)),$$ and similarly $$n^{i\tau_1}= x^{i\tau_1} (1+ O(\varepsilon)).$$ It follows that (a) and (b) are equivalent, thus proving (\ref{eq:lim}). \end{proof} \end{lemma} \begin{lemma} \label{lem:2a} For all $2\le y \le x$, let $\Psi(x,y):=\#\{n\le x: P(n)\le y\}$. Then, \begin{enumerate} \item[(a)] As $x\to \infty$, $$\Psi(x,y) = (1+o(1))\rho(u)\,x,$$ where $u=\log x/\log y$ and $\rho(u)$ is the Dickman function defined by the initial condition $\rho(u)=1$ for $0\le u \le 1$ and thereafter as the continuous solution of the differential equation with shift differences $$u\rho'(u)+\rho(u-1)=0 \qquad (u>1).$$ \item[(b)] For all $2\le y \le x$, $\displaystyle{\Psi(x,y) \ll x \exp\left\{ - \frac 12 \frac{\log x}{\log y} \right\}}$. \end{enumerate} \end{lemma} \begin{proof} Proofs of these results can be found in the book of De Koninck and Luca (\cite{kn:book}, pages 134 and 138). \end{proof} \begin{lemma} \label{lem:3} Given an arbitrary irrational number $\alpha$, set $$S_1(x)=\sum_{n\le x} e(\alpha P_k(n)).$$ Then $$S_1(x) =o(x) \qquad \mbox{as } x \to \infty.$$ \end{lemma} \begin{proof} Let $\varepsilon>0$ be a small number. It is easy to see that in the sum representing $S_1(x)$, we may drop three types of integers $n\le x$, namely (i) those for which $\omega(n)\le k+1$, (ii) those for which $P_{k+1}(n) \le x^\varepsilon$ and finally (iii) those for which $p^2|n$ for some prime $p\ge P_k(n)$, the reason being that the number of these exceptional $n$'s is $O(\varepsilon x)$. So, let us write the remaining integers $n\le x$ as $$n = \nu p_k p_{k-1} \cdots p_1, \quad \mbox{where } x^\varepsilon < P(\nu)< p_k 2x^\varepsilon,$$ and thus we write $T_1(x)=T_1'(x) + T_1''(x)$. On the one hand, using the fact that $\displaystyle{ \sum_{x^\varepsilon < p_k \le 2x^\varepsilon} \frac 1{p_k} \ll \frac 1{\varepsilon \log x}}$, we obtain \begin{equation} \label{eq:a1} \left| T_1'(x) \right| \ll \frac{x}{\varepsilon \log x} \left( \sum_{x^\varepsilon < p_k \le 2x^\varepsilon} \frac 1{p_k} \right)^k \ll_\varepsilon \frac x{\log x}. \end{equation} On the other hand, using the Vinogradov theorem (see (\ref{eq:vin})) and the continuity of the $\rho$ function, we obtain that, as $x\to \infty$, \begin{eqnarray} \label{eq:a2} \nonumber \left| T_1''(x) \right| & \le & \sum_{x^\varepsilon 0$ be a fixed small number and choose $y$ satisfying $x^\varepsilon \le y \le x$. Further set $\Pi_y:= \prod_{y\le p \le x} p$. We then have \begin{eqnarray*} E(x|y) & = & \sum_{n\le x} f(n) \sum_{d|(n,\Pi_y)} \mu(d) = \sum_{d|\Pi_y} \mu(d) \sum_{md\le x} f(md) \\ & = & \sum_{d|\Pi_y} \mu(d) f(d) \sum_{m\le x/d} f(m) + O \left( \sum_{dm\le x \atop{d|\Pi_y \atop (d,m)>1}} 1 \right) \\ & = & \sum_{d|\Pi_y} \mu(d) f(d) E(x/d) +O \left( x \sum_{p>y} \frac 1{p^2} \right). \end{eqnarray*} Consequently, uniformly for $x^\varepsilon \le y \le x$, and in light of (\ref{eq:oubli}), we have \begin{equation} \label{eq:E} |E(x|y)| \le x \sum_{d|\Pi_y} \frac{\delta(x/d)}d + O \left( \frac xy \right). \end{equation} In light of (\ref{eq:E}), in order to show that \begin{equation} \label{eq:ee} E(x|y)=o(x) \qquad \mbox{ as } x\to \infty, \end{equation} we only need to show that \begin{equation} \label{eq:E1} T_0:=\sum_{d|\Pi_y} \frac{\delta(x/d)}d = o(1) \quad \mbox{ as } x\to \infty. \end{equation} We split the above sum in two parts as follows: \begin{eqnarray} \label{eq:T0} \nonumber T_0 & = & \sum_{d|\Pi_y \atop d\le x/\log x} \frac{\delta(x/d)}d + \sum_{d|\Pi_y \atop x/\log x < d \le x} \frac{\delta(x/d)}d \\ \nonumber & \le & \delta(\log x) \sum_{d|\Pi_y \atop d\le x/\log x} \frac 1d + c\sum_{d|\Pi_y \atop x/\log x < d \le x} \frac 1d \\ & = & \delta(\log x) T_1 + c T_2, \end{eqnarray} where $c$ is some positive constant. On the one hand, we have \begin{equation} \label{eq:T1} T_1 \le \prod_{x^\varepsilon\le p \le x} \left( 1 + \frac 1p \right) \ll \exp\left\{ \sum_{x^\varepsilon\le p \le x} \frac 1p \right\} \ll \frac 1{\varepsilon}. \end{equation} On the other hand, setting $U_0=x/\log x$ and letting $j_0$ be the smallest positive integer satisfying $2^{j_0+1}U_0>x$, we have \begin{eqnarray} \label{eq:T2} \nonumber T_2 & \le & \sum_{j=0}^{j_0} \frac 1{2^j U_0} \sum_{2^j U_0 \le d< 2^{j+1} U_0 \atop p(d)>x^\varepsilon} 1 \\ & \le & \sum_{j=1}^{j_0} \prod_{p x^\varepsilon} f(n) e(\alpha P_k(n)) = S_f'(x) + S_f''(x), \end{equation} say. First, observe that it is an easy consequence of the Tur\'an-Kubilius inequality that $$\sum_{n\le x} \left( \sum_{p|n \atop x^\varepsilon < p \le x} 1 - \sum_{x^\varepsilon < p \le x} \frac 1p \right)^2 \ll x \sum_{x^\varepsilon < p \le x} \frac 1p \ll x \log(1/\varepsilon),$$ from which it follows that $$ \sum_{n\le x \atop P_k(n) \le x^\varepsilon} \left( k- \log(1/\varepsilon)\right)^2 \ll x \log(1/\varepsilon).$$ Using this, we conclude that \begin{equation} \label{eq:s1} \left| S_f'(x) \right| \le \#\{n\le x: P_k(n)\le x^\varepsilon\} \ll \frac x{\log(1/\varepsilon)}. \end{equation} Similarly, we can say that $$\#\{n\le x: P_{k+1}(n)\le x^\varepsilon\} \ll \frac x{\log(1/\varepsilon)}.$$ This implies that $Q_k(n)\le x^{1-\varepsilon}$ for all but $\displaystyle{O\left( \frac x{\log(1/\varepsilon)} \right) }$ integers $n\le x$. This means that \begin{equation} \label{eq:s2} \left| S_f''(x) \right| \le \left| e(\alpha P_k) f(Q_k) E(x/Q_k|P_k) \right| + O\left( \frac x{\log(1/\varepsilon)} \right). \end{equation} Using (\ref{eq:**}), we obtain that the summation on the right-hand side of (\ref{eq:s2}) is $$o\left( x \sum_{p_k\cdots p_1\le x \atop x^\varepsilon < p_k<\cdots D; \end{cases} \qquad \text{and} \qquad g_D(p^a) = \begin{cases} 1, & \text{ if } p\le D;\\ f(p^a), & \text{ if } p>D. \end{cases} $$ Then define the arithmetical function $t(n)$ implicitly by the relation $f_D(n)=\sum_{\delta|n} t(\delta)$. Since one easily sees that $t(p)=0$ if $p>D$, it follows that the above summation runs over only those divisors $\delta$ for which $P(\delta)\le D$. Further define $$a_D(x):= \sum_{D

D} u(p^a) -a_D(x) \right)^2 \ll x \sum_{p>D} \frac{u^2(p^a)}{p^a} \ll x \eta_D^2,$$ say, where $\eta_D\to 0$ as $D\to \infty$. It follows from this that $$\sum_{n\le x} \left| f(n) -f_D(n) e^{ia_D(x)} \right|^2 \ll \eta_D^2 x,$$ and therefore that $$\sum_{n\le x} \left| f(n) -f_D(n) e^{ia_D(x)} \right| \ll \eta_D x.$$ We may conclude from this that $$S_f(x) = e^{-i a_D(x)} A_D(x) + O(\eta_D x),$$ where $$A_D(x) := \sum_{n \le x} f_D(n) e(\alpha P_k(n)).$$ For each integer $\delta\ge 1$, let $$B_\delta(y)=\sum_{m\le y} e(\alpha P_k(\delta m)).$$ With this definition, we may write \begin{equation} \label{eq:*0} A_D(x) = \sum_{\delta\le x \atop P(\delta) \le D} t(\delta) B_\delta \left( \frac x{\delta} \right). \end{equation} Now if $P_k(\delta m) \neq P_k(m)$, then either $\omega(m)\le k-1$ or $P_k(m)\le D$. Thus \begin{equation} \label{eq:exclam} \left| B_\delta\left(\frac x{\delta} \right) - B_1 \left( \frac x{\delta} \right) \right| \le \sum_{m\le x/\delta \atop \omega(m)\le k-1} 1 + \sum_{Q\nu \le x/\delta \atop \omega(Q)\le k-1,\ P(\nu)\le D} 1 = U_1(x) + U_2(x), \end{equation} say. Write \begin{equation} \label{eq:u0} U_1(x) = \sum_{\delta \le \sqrt x} * + \sum_{\sqrt x < \delta \le x} * = U_1'(x) + U_1''(x), \end{equation} say. Then, it is clear that \begin{equation} \label{eq:u1} U_1''(x) \le \sum_{m\le \sqrt x} 1 \le \sqrt x. \end{equation} On the other hand, using the Hardy-Ramanujan inequality (see, for instance, \cite[Theorem 10.1]{kn:book}), it follows that there exist two absolute positive constants $c_1$ and $c_2$ such that \begin{equation} \label{eq:u2} U_1'(x) \le \frac{c_1x}{\delta\log x} \frac{(\log \log x+c_2)^{k-2}}{(k-2)!}. \end{equation} On the other hand, \begin{equation} \label{eq:v0} U_2(x) \le U_2'(x) +U_2''(x), \end{equation} where in $U_2'(x)$, we sum over those $Q\le \sqrt{x/\delta}$, while in $U_2''(x)$, we sum over those $\nu \le \sqrt{x/\delta}$. To estimate $U_2'(x)$, we proceed as follows. First, using Lemma \ref{lem:2a} (b), we get \begin{equation} \label{eq:v1} U_2'(x) \le \sum_{Q\le \sqrt{x/\delta} \atop \omega(Q)\le k-1} \sum_{\nu \le x/\delta Q \atop P(\nu)\le D} 1 \ll \sum_{Q\le \sqrt{x/\delta} \atop \omega(Q)\le k-1} \frac x{\delta Q} \exp\left\{ - \frac 12 \frac{\log(x/\delta Q)}{\log D} \right\}. \end{equation} Since $\displaystyle{ \frac x{\delta Q} \ge \left( \frac x{\delta} \right)^{1/4} \ge x^{1/8} }$, it follows from (\ref{eq:v1}) that \begin{equation} \label{eq:v1a} U_2'(x) \ll \sum_{Q\le \sqrt{x/\delta} \atop \omega(Q)\le k-1} \frac x{\delta Q} \exp\left\{ - \frac 1{16} \frac{\log x}{\log D} \right\}. \end{equation} Since $$ \sum_{Q\le x \atop \omega(Q)\le k-1} \frac 1Q \ll (\log \log x)^{k-1},$$ it follows from (\ref{eq:v1a}) that, given any positive number $K$, \begin{equation} \label{eq:v1b} U_2'(x) \ll_D \frac x{\delta} (\log x)^{-K}. \end{equation} On the other hand, setting $\pi_k(x):=\#\{n\le x: \omega(n)=k \}$ and again using the Hardy-Ramanujan inequality, it follows that \bigbreak \begin{eqnarray} \label{eq:v2} \nonumber U_2''(x) & \le & \sum_{\nu \le \sqrt{x/\delta} \atop P(\nu)\le D} \sum_{Q\le x/\delta \nu \atop \omega(Q)\le k-1} 1 \\ \nonumber &\le & (k-1) \sum_{\nu \le \sqrt{x/\delta} \atop P(\nu)\le D} \pi_{k-1} \left( \frac x{\delta \nu} \right) \\ \nonumber & \le & c_1 \sum_{P(\nu) \le D} \frac{kx}{\delta \nu} \cdot \frac 1{\log x} \frac{(\log \log x+c_2)^{k-2}}{(k-2)!}\\ \nonumber & \le & \frac{c_1x}{\delta \log x} (\log \log x+ c_2)^{k-2} \prod_{p\le D} \left( 1- \frac 1p \right)^{-1} \\ & \ll & \frac{x}{\delta} \frac{\log D}{\log x} (\log \log x)^{k-2}. \end{eqnarray} Substituting (\ref{eq:u1}) and (\ref{eq:u2}) in (\ref{eq:u0}), and then using (\ref{eq:v1b}) and (\ref{eq:v2}) in (\ref{eq:v0}), we obtain from (\ref{eq:exclam}) that $$\max_{\delta \le \sqrt x} \frac 1{x/\delta} \left| B_\delta \left( \frac x{\delta} \right) - B_1 \left( \frac x{\delta} \right) \right| \ll \frac 1{\sqrt{\log x}},$$ say. It follows from this last estimate and (\ref{eq:*0}) that for some positive constant $c_3$ \begin{eqnarray} \label{eq:AD} \nonumber \left| A_D(x) \right| & \le & x \sum_{\sqrt x < \delta < x \atop P(\delta) \le D} \frac{|t(\delta)|}{\delta} + \sum_{\delta \le \sqrt x \atop P(\delta) \le D} |t(\delta)| \left| B_1 \left( \frac x{\delta} \right) \right| + \frac {c_3}{\sqrt{\log x}} \sum_{\delta \le \sqrt x} |t(\delta)| \frac x{\delta} \\ & = & x W_1(x) + W_2(x) + \frac{c_3x}{\sqrt{\log x}} W_3(x), \end{eqnarray} say. Since $$W_3(x) \le \prod_{p\le D} \left( 1 + \frac{|t(p)|}p + \frac{|t(p^2)|}{p^2} + \cdots \right)$$ and since $|t(p^a)| = |f(p^a)-f(p^{a-1})|\le 2$, it follows that \begin{equation} \label{eq:sc} W_3(x) \le c( \log D)^2. \end{equation} Using Lemma \ref{lem:3}, we obtain that, as $x\to \infty$, \begin{equation} \label{eq:sb} W_2(x) = o\left( x W_3(x) \right) = o\left( x (\log D)^2 \right). \end{equation} In order to estimate $W_1(x)$, let us first find an upper bound for $$\kappa(v):= \sum_{v\le \delta \le 2v \atop P(\delta)\le D} t(\delta) \qquad \mbox{ for } \sqrt x \le v \le x.$$ We have \begin{equation} \label{eq:ku} \kappa(v) \le 2 \sum_{k\le \sqrt{2v} \atop P(k) \le D} \sum_{\ell \in [v/k,2v/k] \atop P(\ell)\le D} 1 \le 2 \sum_{k\le \sqrt{2v} \atop P(k) \le D} \Psi\left( \frac{2v}k, D \right). \end{equation} Since $\displaystyle{ \frac{2v}k \ge \sqrt{2v} \ge \sqrt x}$, it follows that, given any arbitrary large number $R>0$, \begin{equation} \label{eq:this} \Psi \left( \frac{2v}k , D \right) \le \frac{2vc}k (\log x)^{-R}. \end{equation} Let $v_0=\sqrt x$ and, for each integer $j\ge 1$, let $v_j=2^j \sqrt x$. Letting $j_0$ be the smallest positive integer such that $v_{j_0}\ge x$, so that $j_0=O(\log x)$, we obtain, using (\ref{eq:this}) in (\ref{eq:ku}), that \begin{equation} \label{eq:sa} W_1(x) \le \sum_{j=0}^{j_0} \frac{\kappa(v_j)}{v_j} \ll \frac{j_0+1}{(\log x)^R}. \end{equation} Substituting (\ref{eq:sc}), (\ref{eq:sb}) and (\ref{eq:sa}) in (\ref{eq:AD}), we obtain that $$A_D(x) = o(x) \qquad \mbox{as } x\to \infty,$$ thus completing the proof of Theorem~\ref{main}. \section{Acknowledgments} Research of the first author was supported by a grant from NSERC and that of the second author by ELTE IK. \begin{thebibliography}{9} \bibitem{kn:banks} W. D. Banks, G. Harman and I. E. Shparlinski, Distributional properties of the largest prime factor, {\it Michigan Math. J.} {\bf 53} (2005), 665--681. \bibitem{kn:largest} J. M. De Koninck and I. K\'atai, Exponential sums involving the largest prime factor function, {\it Acta Arith.} {\bf 146} (2011), 233--245. \bibitem{kn:book} J. M. De Koninck and F. Luca, {\it Analytic Number Theory: Exploring the Anatomy of Integers}, Graduate Studies in Mathematics, Vol.\ 134, American Mathematical Society, 2012. \bibitem{kn:hal} G. Hal\'asz, \"Uber die Mittelwerte multiplikativen zahlentheoretischer Funktionen, {\it Acta Math. Acad. Scient. Hungaricae} {\bf 19} (1968), 365--404. \bibitem{kn:kui} L. Kuipers and H. Niederreiter, {\it Uniform Distribution of Sequences}, John Wiley \& Sons, 1974. \bibitem{kn:spilker} W. Schwarz and J. Spilker, {\it Arithmetical Functions}, London Mathematical Society Lecture Note Series, Vol.\ 184, Cambridge University Press, 1994. \bibitem{kn:vin} I. M. Vinogradov, {\it The Method of Trigonometrical Sums in the Theory of Numbers}, translated from the Russian, revised and annotated by K. F. Roth and Anne Davenport. Reprint of the 1954 translation. Dover Publications, 2004. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11L07; Secondary 11N37. \noindent \emph{Keywords: } exponential sum, largest prime factor. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received October 7 2012; revised version received October 27 2012. Published in {\it Journal of Integer Sequences}, March 2 2013. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .