\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \DeclareMathOperator{\lcm}{lcm} %\setlength{\arraycolsep}{0.5mm} % Correct spacing in aligned equations %\allowdisplaybreaks \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Counting Toroidal Binary Arrays } \vskip 1cm \large S. N. Ethier\footnote{Partially supported by a grant from the Simons Foundation (209632).}\\ Department of Mathematics\\ University of Utah\\ 155 South 1400 East\\ Salt Lake City, UT 84112\\ USA\\ \href{mailto:ethier@math.utah.edu}{ethier@math.utah.edu} \end{center} \vskip .2 in \begin{abstract} A formula for the number of toroidal $m\times n$ binary arrays, allowing rotation of the rows and/or the columns but not reflection, is known. Here we find a formula for the number of toroidal $m\times n$ binary arrays, allowing rotation and/or reflection of the rows and/or the columns. \end{abstract} \section{Introduction} The number of \textit{necklaces} with $n$ beads of two colors when turning over is not allowed is \begin{equation}\label{A000031} \frac{1}{n}\sum_{d\,|\,n}\varphi(d)\,2^{n/d}, \end{equation} where $\varphi$ is Euler's phi function. When turning over is allowed, the number becomes \begin{equation}\label{A000029} \frac{1}{2n}\sum_{d\,|\,n}\varphi(d)\,2^{n/d}+\begin{cases}2^{(n-1)/2},&\text{if $n$ is odd;}\\3\cdot2^{n/2-2},&\text{if $n$ is even}.\end{cases} \end{equation} These are the core sequences \seqnum{A000031} and \seqnum{A000029}, respectively, in \textit{The On-Line Encyclopedia of Integer Sequences} \cite{S}. Our concern here is with two-dimensional versions of these formulas. We consider an $m\times n$ binary array. When opposite edges are identified, it becomes what we will call a \textit{toroidal} binary array. Just as we can rotate a necklace without effect, we can rotate the rows and/or the columns of such an array without effect. The number of (distinct) toroidal $m\times n$ binary arrays is \begin{equation}\label{A184271} \frac{1}{mn}\sum_{c\,|\,m}\;\sum_{d\,|\,n}\varphi(c)\varphi(d)\,2^{mn/\lcm(c,d)}, \end{equation} where lcm stands for least common multiple. This is \seqnum{A184271} in the \textit{OEIS} \cite{S}. The diagonal is \seqnum{A179043}. Rows (or columns) 2--8 are \seqnum{A184264}--\seqnum{A184270}. Row (or column) 1 is of course \seqnum{A000031}. Our aim here is to find the formula that is related to (\ref{A184271}) in the same way that (\ref{A000029}) is related to (\ref{A000031}). More precisely, we wish to count the number of toroidal $m\times n$ binary arrays allowing rotation and/or reflection of the rows and/or the columns. This is \seqnum{A222188} in the \textit{OEIS} \cite{S}. The diagonal is \seqnum{A209251}. Rows (or columns) 2--5 are \seqnum{A222187} and \seqnum{A222189}--\seqnum{A222191}. Row (or column) 1 is of course \seqnum{A000029}. For an alternative description, we could define a group action on the set of $m\times n$ binary arrays, which has $2^{mn}$ elements. If the group is $C_m\times C_n$, where $C_m$ denotes the cyclic group of order $m$, then the number of orbits is given by (\ref{A184271}) (see Theorem~\ref{rotations-thm} below). If the group is $D_m\times D_n$, where $D_m$ denotes the dihedral group of order $2m$, then the number of orbits is given in Theorem~\ref{rot-refl-thm} below. Both theorems are proved using P\'olya's enumeration theorem (actually, the simplified unweighted version; see, e.g., van Lint and Wilson \cite[Theorem~37.1, p.~524]{vW}). Gilbert and Riordan \cite{GR} gave other applications of P\'olya's theorem in which the group was, as it is here, a direct product. To help clarify the distinction between the two group actions, we provide an example. There is no distinction in the $2\times2$ case, so we consider the $3\times3$ case. When the group is $C_3\times C_3$ (allowing rotation of the rows and/or the columns but not reflection), there are 64 orbits, as shown in Table~\ref{3x3-rotations}. When the group is $D_3\times D_3$ (allowing rotation and/or reflection of the rows and/or the columns), there are 36 orbits, as shown in Table~\ref{3x3-rot-refl}. Both tables were generated by \textit{Mathematica} programs. Our interest in the number of toroidal $m\times n$ binary arrays allowing rotation and/or reflection of the rows and/or the columns derives from the fact that this is the size of the state space of the projection of the Markov chain of Mihailovi\'c and Rajkovi\'c \cite{MR} under the mapping that takes a state to the orbit containing it. This reduction of the state space, from 512 states to 36 states in the $3\times3$ case for example, makes it easier to evaluate the stationary distribution. \section{Rotations of rows and columns} Let $X_{m,n}:=\{0,1\}^{\{0,1,\ldots,m-1\}\times\{0,1,\ldots,n-1\}}$ be the set of $m\times n$ arrays of 0s and 1s, which has $2^{mn}$ elements. Let $a(m,n)$ denote the number of orbits of the group action on $X_{m,n}$ by the \\ \begin{table}[H] \caption{\label{3x3-rotations}A list of the 64 orbits of the group action in which the group $C_3\times C_3$ acts on the set of $3\times 3$ binary arrays. (Rows and/or columns can be rotated but not reflected.) Each orbit is represented by its minimal element in 9-bit binary form . Subscripts indicate orbit size. Bars separate different numbers of 1s.} \begin{gather*} \begin{pmatrix}0&0&0\\0&0&0\\0&0&0\end{pmatrix}_{\!\!\!1}\bigg| \begin{pmatrix}0&0&0\\0&0&0\\0&0&1\end{pmatrix}_{\!\!\!9}\bigg| \begin{pmatrix}0&0&0\\0&0&0\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&0&1\\0&0&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&0&1\\0&1&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&0&1\\1&0&0\end{pmatrix}_{\!\!\!9}\bigg|\\ \begin{pmatrix}0&0&0\\0&0&0\\1&1&1\end{pmatrix}_{\!\!\!3}\begin{pmatrix}0&0&0\\0&0&1\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&0&1\\1&0&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&0&1\\1&1&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&1&1\\0&0&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&1&1\\0&1&0\end{pmatrix}_{\!\!\!9}\\ \begin{pmatrix}0&0&0\\0&1&1\\1&0&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&0&1\\0&0&1\end{pmatrix}_{\!\!\!3}\begin{pmatrix}0&0&1\\0&0&1\\0&1&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&0&1\\1&0&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&1&0\\1&0&0\end{pmatrix}_{\!\!\!3}\begin{pmatrix}0&0&1\\1&0&0\\0&1&0\end{pmatrix}_{\!\!\!3}\bigg|\\ \begin{pmatrix}0&0&0\\0&0&1\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&1&1\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&1&1\\1&0&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&1&1\\1&1&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\1&1&1\\0&0&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&0&1\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&0&1\\1&0&1\end{pmatrix}_{\!\!\!9}\\ \begin{pmatrix}0&0&1\\0&0&1\\1&1&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&1&0\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&1&0\\1&0&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&1&0\\1&1&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&1&1\\0&1&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\1&0&0\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\1&0&0\\1&1&0\end{pmatrix}_{\!\!\!9}\bigg|\\ \begin{pmatrix}0&0&0\\0&1&1\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\1&1&1\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&0&1\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&1&0\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&1&1\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&1&1\\1&0&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&1&1\\1&1&0\end{pmatrix}_{\!\!\!9}\\ \begin{pmatrix}0&0&1\\1&0&0\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\1&0&1\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\1&0&1\\1&0&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\1&0&1\\1&1&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\1&1&0\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\1&1&0\\1&0&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\1&1&0\\1&1&0\end{pmatrix}_{\!\!\!9}\bigg|\\ \begin{pmatrix}0&0&0\\1&1&1\\1&1&1\end{pmatrix}_{\!\!\!3}\begin{pmatrix}0&0&1\\0&1&1\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\1&0&1\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\1&1&0\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\1&1&1\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\1&1&1\\1&0&1\end{pmatrix}_{\!\!\!9}\\ \begin{pmatrix}0&0&1\\1&1&1\\1&1&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&1&1\\0&1&1\\0&1&1\end{pmatrix}_{\!\!\!3}\begin{pmatrix}0&1&1\\0&1&1\\1&0&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&1&1\\0&1&1\\1&1&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&1&1\\1&0&1\\1&1&0\end{pmatrix}_{\!\!\!3}\begin{pmatrix}0&1&1\\1&1&0\\1&0&1\end{pmatrix}_{\!\!\!3}\bigg|\\ \begin{pmatrix}0&0&1\\1&1&1\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&1&1\\0&1&1\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&1&1\\1&0&1\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&1&1\\1&1&0\\1&1&1\end{pmatrix}_{\!\!\!9}\bigg| \begin{pmatrix}0&1&1\\1&1&1\\1&1&1\end{pmatrix}_{\!\!\!9}\bigg| \begin{pmatrix}1&1&1\\1&1&1\\1&1&1\end{pmatrix}_{\!\!\!1} \end{gather*} \end{table} %\afterpage{\clearpage} \begin{table}[H] \caption{\label{3x3-rot-refl}A list of the 36 orbits of the group action in which the group $D_3\times D_3$ acts on the set of $3\times 3$ binary arrays. (Rows and/or columns can be rotated and/or reflected.) Each orbit is represented by its minimal element in 9-bit binary form. Subscripts indicate orbit size. Bars separate different numbers of 1s.} \begin{gather*} \begin{pmatrix}0&0&0\\0&0&0\\0&0&0\end{pmatrix}_{\!\!\!1}\bigg| \begin{pmatrix}0&0&0\\0&0&0\\0&0&1\end{pmatrix}_{\!\!\!9}\bigg| \begin{pmatrix}0&0&0\\0&0&0\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&0&1\\0&0&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&0&1\\0&1&0\end{pmatrix}_{\!\!\!18}\bigg|\\ \begin{pmatrix}0&0&0\\0&0&0\\1&1&1\end{pmatrix}_{\!\!\!3}\begin{pmatrix}0&0&0\\0&0&1\\0&1&1\end{pmatrix}_{\!\!\!36}\begin{pmatrix}0&0&0\\0&0&1\\1&1&0\end{pmatrix}_{\!\!\!18}\begin{pmatrix}0&0&1\\0&0&1\\0&0&1\end{pmatrix}_{\!\!\!3}\begin{pmatrix}0&0&1\\0&0&1\\0&1&0\end{pmatrix}_{\!\!\!18}\begin{pmatrix}0&0&1\\0&1&0\\1&0&0\end{pmatrix}_{\!\!\!6}\bigg|\\ \begin{pmatrix}0&0&0\\0&0&1\\1&1&1\end{pmatrix}_{\!\!\!18}\begin{pmatrix}0&0&0\\0&1&1\\0&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&0\\0&1&1\\1&0&1\end{pmatrix}_{\!\!\!18}\begin{pmatrix}0&0&1\\0&0&1\\0&1&1\end{pmatrix}_{\!\!\!18}\begin{pmatrix}0&0&1\\0&0&1\\1&1&0\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&1&0\\0&1&1\end{pmatrix}_{\!\!\!18}\begin{pmatrix}0&0&1\\0&1&0\\1&0&1\end{pmatrix}_{\!\!\!36}\bigg|\\ \begin{pmatrix}0&0&0\\0&1&1\\1&1&1\end{pmatrix}_{\!\!\!18}\begin{pmatrix}0&0&1\\0&0&1\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&0&1\\0&1&0\\1&1&1\end{pmatrix}_{\!\!\!18}\begin{pmatrix}0&0&1\\0&1&1\\0&1&1\end{pmatrix}_{\!\!\!18}\begin{pmatrix}0&0&1\\0&1&1\\1&0&1\end{pmatrix}_{\!\!\!18}\begin{pmatrix}0&0&1\\0&1&1\\1&1&0\end{pmatrix}_{\!\!\!36}\begin{pmatrix}0&0&1\\1&1&0\\1&1&0\end{pmatrix}_{\!\!\!9}\bigg|\\ \begin{pmatrix}0&0&0\\1&1&1\\1&1&1\end{pmatrix}_{\!\!\!3}\begin{pmatrix}0&0&1\\0&1&1\\1&1&1\end{pmatrix}_{\!\!\!36}\begin{pmatrix}0&0&1\\1&1&0\\1&1&1\end{pmatrix}_{\!\!\!18}\begin{pmatrix}0&1&1\\0&1&1\\0&1&1\end{pmatrix}_{\!\!\!3}\begin{pmatrix}0&1&1\\0&1&1\\1&0&1\end{pmatrix}_{\!\!\!18}\begin{pmatrix}0&1&1\\1&0&1\\1&1&0\end{pmatrix}_{\!\!\!6}\bigg|\\ \begin{pmatrix}0&0&1\\1&1&1\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&1&1\\0&1&1\\1&1&1\end{pmatrix}_{\!\!\!9}\begin{pmatrix}0&1&1\\1&0&1\\1&1&1\end{pmatrix}_{\!\!\!18}\bigg| \begin{pmatrix}0&1&1\\1&1&1\\1&1&1\end{pmatrix}_{\!\!\!9}\bigg| \begin{pmatrix}1&1&1\\1&1&1\\1&1&1\end{pmatrix}_{\!\!\!1} \end{gather*} \end{table} \noindent group $C_m\times C_n$. In other words, $a(m,n)$ is the number of (distinct) toroidal $m\times n$ binary arrays, allowing rotation of the rows and/or the columns but not reflection. \begin{theorem}\label{rotations-thm} \begin{equation}\label{a(m,n)} a(m,n)=\frac{1}{mn}\sum_{c\,|\,m}\;\sum_{d\,|\,n}\varphi(c)\varphi(d)\,2^{mn/\lcm(c,d)}. \end{equation} \end{theorem} \begin{proof} By P\'olya's enumeration theorem, \begin{equation}\label{a(m,n)-PET} a(m,n)=\frac{1}{mn}\sum_{i=0}^{m-1}\sum_{j=0}^{n-1}2^{A_{ij}}, \end{equation} where $A_{ij}$ is the number of cycles in the permutation $\sigma^i\tau^j$; here $\sigma$ rotates the rows (row 0 becomes row 1, row 1 becomes row 2, \dots, row $m-1$ becomes row 0) and $\tau$ rotates the columns. For example, $A_{00}=mn$ because the identity permutation has $mn$ fixed points, each of which is a cycle of length 1. It is well known that, if $d$ divides $n$, then the number of elements of $C_n$ that are of order $d$ is $\varphi(d)$. So if $c$ divides $m$ and $d$ divides $n$, then the number of pairs $(i,j)\in\{0,1,\ldots,m-1\}\times\{0,1,\ldots,n-1\}$ such that $\sigma^i$ is of order $c$ and $\tau^j$ is of order $d$ is $\varphi(c)\varphi(d)$. For such $(i,j)$, $\sigma^i\tau^j$ is of order $\lcm(c,d)$ because $\sigma^i$ and $\tau^j$ commute, hence each cycle of $\sigma^i\tau^j$ has length $\lcm(c,d)$ and $A_{ij}=mn/\lcm(c,d)$. We are using the fact that each permutation in $C_m\times C_n$ has the property that all of its cycles are of equal length. Therefore, (\ref{a(m,n)}) follows from (\ref{a(m,n)-PET}). \end{proof} Clearly, $a(1,n)$ reduces to (\ref{A000031}); also, $a(m,n)=a(n,m)$ for all $m,n\ge1$. Table~\ref{array-a} provides numerical values of $a(m,n)$ for small $m$ and $n$. \begin{table}[H] \caption{\label{array-a}The number $a(m,n)$ of toroidal $m\times n$ binary arrays, allowing rotation of the rows and/or the columns but not reflection, for $m,n=1,2,\ldots,8$.} \tabcolsep=1.5mm \begin{center} \begin{tiny} \begin{tabular}{rrrrrrrr} \hline \noalign{\smallskip} 2 & 3 & 4 & 6 & 8 & 14 & 20 & 36\\ 3 & 7 & 14 & 40 & 108 & 362 & 1182 & 4150\\ 4 & 14 & 64 & 352 & 2192 & 14624 & 99880 & 699252\\ 6 & 40 & 352 & 4156 & 52488 & 699600 & 9587580 & 134223976\\ 8 & 108 & 2192 & 52488 & 1342208 & 35792568 & 981706832 & 27487816992\\ 14 & 362 & 14624 & 699600 & 35792568 & 1908897152 & 104715443852 & 5864063066500\\ 20 & 1182 & 99880 & 9587580 & 981706832 & 104715443852 & 11488774559744 & 1286742755471400\\ 36 & 4150 & 699252 & 134223976 & 27487816992 & 5864063066500 & 1286742755471400 & 288230376353050816\\ \noalign{\smallskip} \hline \end{tabular} \end{tiny} \end{center} \end{table} \section{Rotations and reflections of rows and columns} Let $b(m,n)$ denote the number of orbits of the group action on $X_{m,n}$ by the group $D_m\times D_n$. In other words, $b(m,n)$ is the number of (distinct) toroidal $m\times n$ binary arrays, allowing rotation and/or reflection of the rows and/or the columns. \begin{theorem}\label{rot-refl-thm} $$ b(m,n)=b_1(m,n)+b_2(m,n)+b_3(m,n)+b_4(m,n), $$ where $$ b_1(m,n)=\frac{1}{4mn}\sum_{c\,|\,m}\;\sum_{d\,|\,n}\varphi(c)\varphi(d)\,2^{mn/\lcm(c,d)}, $$ \begin{eqnarray*} &&\!\!\!\!\!\!\!\!b_2(m,n)\\ &=&\begin{cases}(4n)^{-1}2^{(m+1)n/2},&\text{if $m$ is odd;}\\(8n)^{-1}[2^{mn/2}+2^{(m+2)n/2}],&\text{if $m$ is even,}\end{cases}\;\;+\frac{1}{4n}\sum_{d\ge2:\,d\,|\,n}\varphi(d)\,2^{mn/d}\\ &&\!\!\!{}+\begin{cases}(4n)^{-1}\sum'[2^{(m + 1)\gcd(j, n)/2} - 2^{m \gcd(j, n)}],&\text{if $m$ is odd;}\\(8n)^{-1}\sum'[2^{m\gcd(j, n)/2}+2^{(m+2)\gcd(j, n)/2}- 2^{m \gcd(j, n)+1}],&\text{if $m$ is even,}\end{cases} \end{eqnarray*} with $\sum':=\sum_{1\le j\le n-1:\,n/\gcd(j,n){\rm\ is\ odd}}$, $$b_3(m,n)=b_2(n,m),$$ and $$ b_4(m,n)=\begin{cases}2^{(mn - 3)/2},&\text{if $m$ and $n$ are odd;}\\ 3\cdot2^{mn/2 - 3},&\text{if $m$ and $n$ have opposite parity;}\\ 7\cdot2^{m n/2 - 4},&\text{if $m$ and $n$ are even.}\end{cases} $$ \end{theorem} \begin{proof} Again by P\'olya's enumeration theorem, $$ b(m,n)=\frac{1}{4mn}\sum_{i=0}^{m-1}\sum_{j=0}^{n-1}[2^{A_{ij}}+2^{B_{ij}}+2^{C_{ij}}+2^{D_{ij}}], $$ where $A_{ij}$ (resp., $B_{ij}$, $C_{ij}$, $D_{ij}$) is the number of cycles in the permutation $\sigma^i\tau^j$ (resp., $\sigma^i\tau^j\rho$, $\sigma^i\tau^j\theta$, $\sigma^i\tau^j\rho\theta$); here $\sigma$ rotates the rows (row 0 becomes row 1, row 1 becomes row 2, \dots, row $m-1$ becomes row 0), $\tau$ rotates the columns, $\rho$ reflects the rows (rows 0 and $m-1$ are interchanged, rows 1 and $m-2$ are interchanged, \dots, rows $\lfloor m/2\rfloor-1$ and $m-\lfloor m/2\rfloor$ are interchanged), and $\theta$ reflects the columns. By the proof of Theorem~\ref{rotations-thm}, we know the form of $A_{ij}$, and this gives the formula for $b_1(m,n)$. Next we find $(B_{i0})$, the entries in the 0th column of matrix $B$. For $i=0,1,\ldots,m-1$, the permutation $\sigma^i\rho$ can be described by its effect on the rows of $\{0,1,\ldots,m-1\}\times\{0,1,\ldots,n-1\}$. It reverses the first $m-i$ rows and reverses the last $i$ rows. Since the reversal of $k$ consecutive integers has $k/2$ transpositions if $k$ is even and $(k-1)/2$ transpositions and one fixed point if $k$ is odd, the permutation of $\{0,1,\ldots,m-1\}$ induced by $\sigma^i\rho$ has $(m-1)/2$ transpositions and one fixed point if $m$ is odd, and $m/2$ transpositions if $i$ is even and $m$ is even, and $(m-2)/2$ transpositions and two fixed points if $i$ is odd and $m$ is even. These numbers must be multiplied by $n$ for the permutation $\sigma^i\rho$ of $\{0,1,\ldots,m-1\}\times\{0,1,\ldots,n-1\}$. The results are that $B_{i0}=(m+1)n/2$ if $m$ is odd, $B_{i0}=mn/2$ if $i$ is even and $m$ is even, and $B_{i0}=(m+2)n/2$ if $i$ is odd and $m$ is even. Therefore, $(4mn)^{-1}\sum_{i=0}^{m-1}2^{B_{i0}}=(4n)^{-1}2^{(m+1)n/2}$ if $m$ is odd, whereas $(4mn)^{-1}\sum_{i=0}^{m-1}2^{B_{i0}}=(8n)^{-1}[2^{mn/2}+2^{(m+2)n/2}]$ if $m$ is even, and this gives the first term in the formula for $b_2(m,n)$. We turn to $B_{ij}$ for $i=0,1,\ldots,m-1$ and $j=1,2,\ldots,n-1$. First, by a property of cyclic groups, $\tau^j$ has order $d:=n/\gcd(j,n)$. If $d$ is even, then, since $\sigma^i\rho$ has order 2 (see the preceding paragraph), $\sigma^i\tau^j\rho$ has order $d$ and all of its cycles have length $d$. In this case, $B_{ij}=mn/d=m\gcd(j,n)$. Suppose then that $d$ is odd. There are three cases: ($i$) $m$ odd, ($ii$) $i$ even and $m$ even, and ($iii$) $i$ odd and $m$ even. Recall that $\sigma^i\rho$ reverses the first $m-i$ rows and reverses the last $i$ rows. In case ($i$), one row is fixed by $\sigma^i\rho$, so cycles of $\sigma^i\tau^j\rho$ in this row have length $d$ and all others have length $2d$. We find that $B_{ij}=n/d+(m-1)n/(2d)=(m+1)n/(2d)=(m+1)\gcd(j,n)/2$. In case ($ii$), no rows are fixed by $\sigma^i\rho$, so all cycles of $\sigma^i\tau^j\rho$ have length $2d$. It follows that $B_{ij}=mn/(2d)=m\gcd(j,n)/2$. In case ($iii$), two rows are fixed by $\sigma^i\rho$, so cycles of $\sigma^i\tau^j\rho$ in these rows have length $d$ and all others have length $2d$. We conclude that $B_{ij}=2n/d+(m-2)n/(2d)=(m+2)\gcd(j,n)/2$. If the formula for $B_{ij}$ that holds when $d$ is even were valid generally, we would have the second term in the formula for $b_2(m,n)$. The third term in the formula for $b_2(m,n)$ is a correction to the second term to treat the cases ($i$)--($iii$) in which $d$ is odd. Next, the formula for $b_3(m,n)$ follows by symmetry. More explicitly, $$ b_3(m,n)=\frac{1}{4mn}\sum_{i=0}^{m-1}\sum_{j=0}^{n-1}2^{C_{ij}}=\frac{1}{4nm}\sum_{j=0}^{n-1}\sum_{i=0}^{m-1}2^{B_{ji}}=b_2(n,m) $$ because the number of cycles $C_{ij}$ of $\sigma^i\tau^j\theta$ acting on $m\times n$ arrays is equal to the number of cycles $B_{ji}$ of $\sigma^j\tau^i\rho$ acting on $n\times m$ arrays. Finally, we consider $b_4(m,n)$. For $i=0,1,\ldots,m-1$ and $j=0,1,\ldots,n-1$, $\sigma^i\tau^j\rho\theta$ has the effect of reversing the first $m-i$ rows, reversing the last $i$ rows, reversing the first $n-j$ columns, and reversing the last $j$ columns. If $m$ and $n$ are odd, then there is one fixed point and $(mn-1)/2$ transpositions, so $D_{ij}=(mn+1)/2$ for all $i$ and $j$, hence $b_4(m,n)=2^{(mn-3)/2}$. If $m$ is odd and $n$ is even, then $D_{ij}=mn/2$ for all $i$ and even $j$ and $D_{ij}=mn/2+1$ for all $i$ and odd $j$. This leads to $b_4(m,n)=(1/8)[2^{mn/2}+2^{mn/2+1}]=3\cdot 2^{mn/2-3}$. If $m$ is even and $n$ is odd, then $D_{ij}=mn/2$ for even $i$ and all $j$ and $D_{ij}=mn/2+1$ for odd $i$ and all $j$. This leads to the same formula for $b_4(m,n)$. Finally, if $m$ and $n$ are even, then $D_{ij}=mn/2$ unless $i$ and $j$ are both odd, in which case $D_{ij}=mn/2+2$. This implies that $b_4(m,n)=(1/4)[(3/4)2^{mn/2}+(1/4)2^{mn/2+2}]=7\cdot2^{mn/2-4}$. This completes the proof. \end{proof} It is easy to check that $b(1,n)$ reduces to (\ref{A000029}) and that $b(m,n)=b(n,m)$ for all $m,n\ge1$. Table~\ref{array-b} provides numerical values of $b(m,n)$ for small $m$ and $n$. \begin{table}[H] \caption{\label{array-b}The number $b(m,n)$ of toroidal $m\times n$ binary arrays, allowing rotation and/or reflection of the rows and/or the columns, for $m,n=1,2,\ldots,8$.} \tabcolsep=1.5mm \begin{center} \begin{tiny} \begin{tabular}{rrrrrrrr} \hline \noalign{\smallskip} 2 & 3 & 4 & 6 & 8 & 13 & 18 & 30\\ 3 & 7 & 13 & 34 & 78 & 237 & 687 & 2299\\ 4 & 13 & 36 & 158 & 708 & 4236 & 26412 & 180070\\ 6 & 34 & 158 & 1459 & 14676 & 184854 & 2445918 & 33888844\\ 8 & 78 & 708 & 14676 & 340880 & 8999762 & 245619576 & 6873769668\\ 13 & 237 & 4236 & 184854 & 8999762 & 478070832 & 26185264801 & 1466114420489\\ 18 & 687 & 26412 & 2445918 & 245619576 & 26185264801 & 2872221202512 & 321686550498774\\ 30 & 2299 & 180070 & 33888844 & 6873769668 & 1466114420489 & 321686550498774 & 72057630729710704\\ \noalign{\smallskip} \hline \end{tabular} \end{tiny} \end{center} \end{table} \begin{thebibliography}{9} \bibitem{GR}E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, \textit{Illinois J. Math.} \textbf{5} (1961), 657--665. \bibitem{MR}Z. Mihailovi\'c and M. Rajkovi\'c, Cooperative Parrondo's games on a two-dimensional lattice, \textit{Phys. A} \textbf{365} (2006), 244--251. \bibitem{S}N. J. A. Sloane, \textit{The On-Line Encyclopedia of Integer Sequences}, \url{http://oeis.org/}, 2013. \bibitem{vW}J. H. van Lint and R. M. Wilson, \textit{A Course in Combinatorics}, 2nd ed., Cambridge University Press, 2001. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 \emph{Mathematics Subject Classification}: Primary 05A05. \noindent \emph{Keywords}: necklace, Euler's phi function, group action, cyclic group, dihedral group, P\'olya's enumeration theorem. \bigskip \hrule \bigskip \noindent Concerned with sequences \seqnum{A000029}, \seqnum{A000031}, \seqnum{A179043}, \seqnum{A184264}, \seqnum{A184265}, \seqnum{A184266},\break \seqnum{A184267}, \seqnum{A184268}, \seqnum{A184269}, \seqnum{A184270}, \seqnum{A184271}, \seqnum{A209251}, \seqnum{A222187}, \seqnum{A222188}, \seqnum{A222189}, \seqnum{A222190}, \seqnum{A222191}. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received January 13 2013; revised version received April 26 2013. Published in {\it Journal of Integer Sequences}, May 1 2013. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .