\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \usepackage{caption} \usepackage{rotating} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \DeclareMathOperator{\lcm}{lcm} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Rumor Arrays} \vskip 1cm \large Bruce Dearden, Joel Iiams, and Jerry Metzger\\ University of North Dakota\\ Department of Mathematics\\ Witmer Hall Room 313\\ 101 Cornell Street Stop 8376\\ Grand Forks, ND 58202-8376\\ USA\\ \href{mailto:bruce.dearden@und.edu}{\tt bruce.dearden@und.edu}\\ \href{mailto:joel.iiams@und.edu}{\tt joel.iiams@und.edu}\\ \href{mailto:jerry.metzger@und.edu}{\tt jerry.metzger@und.edu}\\ \end{center} \vskip .2in \begin{abstract} Rumor sequences are generated recursively as follows: fix nonnegative integers $b$, $c$, and let $z_{0}=0$. For $n\geq 1$, define $z_{n}= (bz_{n-1}+c) \mod{n}$, where the least nonnegative residue modulo $n$ is taken. There have been a few papers dealing with the behavior of rumor sequences, but they all concern that behavior when the value of $c$ is fixed. It turns out that if, for a given value of $b$, the rumor sequences for $c=0,1,2,\ldots$ are written down, one below the other, some interesting and unexpected patterns appear in the columns of that array. These patterns are investigated, proving some, and, based on computer generated data, we make two conjectures. \end{abstract} \section{Introduction} Rumor sequences are generated recursively as follows: fix nonnegative integers $b$, $c$, and let $z_{0}=0$. For $n\geq 1$, define $z_{n}= (bz_{n-1}+c) \mod{n}$, where the least nonnegative residue modulo $n$ is taken. The construction of such sequences is very natural and such sequences exhibit some unexpected behavior, so it is not surprising that the notion of a rumor sequence has been independently rediscovered and mentioned in the literature several times. The earliest reference we can find is Borwein and Loring \cite[p.\ 379]{bl}, where they investigate a question raised by Erd\H{o}s \cite{er} in 1975 and again by Erd\H{o}s and Graham \cite[p.\ 62]{erg} in 1980. It seems next to have appeared in Vantieghem \cite{va} in 1996, and, most recently, in 2010, where Dearden and Metzger \cite{dm} coined the term {\it rumor} (for running modulus recursion). In that note, the general notion of a rumor sequence is considered: a sequence constructed recursively, with each new term computed using a modulus $1$ more than that used for the previous term. Almost surely there are other papers that mention this idea, but, because there has been no common (catchy) name for such sequences, locating them has proved difficult. The papers we are aware of consider various aspects of the behavior of rumor sequences, but they all concern the behavior when the value of $c$ is fixed. It turns out that if, for a given value of $b$, the rumor sequences for $c=0,1,2,\ldots$ are written down, one below the other, some interesting and unexpected patterns appear in the columns of that {\it rumor array}. In this paper we will investigate these patterns, proving some, and, based on computer experimentation, we make two conjectures. Using $RA_{b}$ to denote the rumor array generated with parameter $b$, two such arrays, $RA_{2}$ and $RA_{6}$, are shown in the tables included here. \setlength{\arraycolsep}{3.5pt} \begin{sidewaysfigure} \begin{center} \[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 3 & 1 & 3 & 7 & 6 & 3 & 7 & 3 & 7 & 1 & 3 & 7 & 15 & 13 & 8 & 17 & 14 & 7 & 15 & 7 & 15 & 5 & 11 & 23 & 18 & 7 & 15 & 31 & 30 & 27 & 20 & 5 \\ 2 & 0 & 0 & 2 & 2 & 1 & 4 & 3 & 0 & 2 & 6 & 3 & 8 & 5 & 12 & 11 & 8 & 1 & 4 & 10 & 2 & 6 & 14 & 7 & 16 & 9 & 20 & 15 & 4 & 10 & 22 & 15 & 0 & 2 & 6 & 14 & 30 \\ 3 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 \\ 4 & 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 \\ 5 & 0 & 1 & 1 & 3 & 1 & 1 & 0 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 \\ 6 & 0 & 0 & 0 & 2 & 0 & 0 & 6 & 2 & 1 & 8 & 0 & 6 & 5 & 2 & 10 & 10 & 9 & 6 & 18 & 2 & 10 & 4 & 14 & 10 & 1 & 8 & 22 & 22 & 21 & 18 & 11 & 28 & 29 & 30 & 31 & 32 \\ 7 & 0 & 1 & 0 & 3 & 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\ 8 & 0 & 0 & 2 & 0 & 3 & 2 & 5 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\ 9 & 0 & 1 & 2 & 1 & 1 & 5 & 5 & 3 & 6 & 1 & 0 & 9 & 1 & 11 & 1 & 11 & 14 & 1 & 11 & 11 & 10 & 7 & 0 & 9 & 2 & 13 & 8 & 25 & 1 & 11 & 0 & 9 & 27 & 29 & 32 & 1 \\ 10 & 0 & 0 & 1 & 0 & 0 & 4 & 4 & 2 & 5 & 0 & 10 & 6 & 9 & 0 & 10 & 14 & 4 & 0 & 10 & 10 & 9 & 6 & 22 & 6 & 22 & 2 & 14 & 10 & 1 & 12 & 3 & 16 & 9 & 28 & 31 & 0 \\ 11 & 0 & 1 & 1 & 1 & 3 & 5 & 0 & 3 & 8 & 7 & 3 & 5 & 8 & 13 & 7 & 9 & 12 & 17 & 7 & 5 & 0 & 11 & 10 & 7 & 0 & 11 & 6 & 23 & 28 & 7 & 25 & 29 & 3 & 17 & 10 & 31 \\ 12 & 0 & 0 & 0 & 0 & 2 & 4 & 6 & 0 & 3 & 8 & 6 & 0 & 12 & 8 & 13 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 \\ 13 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 7 & 0 & 3 & 8 & 5 & 10 & 5 & 8 & 13 & 5 & 5 & 4 & 1 & 15 & 21 & 9 & 7 & 2 & 17 & 20 & 25 & 5 & 23 & 28 & 5 & 23 & 25 & 28 & 33 \\ 14 & 0 & 0 & 2 & 2 & 3 & 2 & 4 & 6 & 8 & 0 & 3 & 8 & 4 & 8 & 0 & 14 & 8 & 12 & 0 & 14 & 0 & 14 & 19 & 4 & 22 & 6 & 26 & 10 & 5 & 24 & 0 & 14 & 9 & 32 & 8 & 30 \\ 15 & 0 & 1 & 2 & 3 & 1 & 5 & 4 & 7 & 2 & 9 & 0 & 3 & 8 & 3 & 6 & 11 & 3 & 3 & 2 & 19 & 11 & 15 & 22 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\ 16 & 0 & 0 & 1 & 2 & 0 & 4 & 3 & 6 & 1 & 8 & 10 & 0 & 3 & 8 & 2 & 4 & 7 & 12 & 2 & 0 & 16 & 4 & 1 & 18 & 2 & 20 & 2 & 20 & 27 & 10 & 5 & 26 & 2 & 20 & 21 & 22 \\ 17 & 0 & 1 & 1 & 3 & 3 & 5 & 6 & 5 & 0 & 7 & 9 & 11 & 0 & 3 & 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ 18 & 0 & 0 & 0 & 2 & 2 & 4 & 5 & 4 & 8 & 4 & 4 & 2 & 9 & 8 & 4 & 10 & 4 & 8 & 15 & 8 & 13 & 0 & 18 & 6 & 5 & 2 & 22 & 6 & 1 & 20 & 27 & 8 & 1 & 20 & 23 & 28 \\ 19 & 0 & 1 & 0 & 3 & 0 & 1 & 0 & 3 & 7 & 3 & 3 & 1 & 8 & 7 & 3 & 9 & 3 & 7 & 14 & 7 & 12 & 21 & 15 & 1 & 21 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\ 20 & 0 & 0 & 2 & 0 & 0 & 2 & 3 & 2 & 6 & 2 & 2 & 0 & 7 & 6 & 2 & 8 & 2 & 6 & 13 & 6 & 11 & 20 & 14 & 0 & 20 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\ 21 & 0 & 1 & 2 & 1 & 3 & 3 & 6 & 1 & 5 & 1 & 1 & 11 & 4 & 1 & 8 & 5 & 14 & 13 & 9 & 19 & 17 & 11 & 20 & 13 & 22 & 13 & 20 & 5 & 2 & 25 & 9 & 7 & 2 & 25 & 1 & 23 \\ 22 & 0 & 0 & 1 & 0 & 2 & 2 & 5 & 0 & 4 & 0 & 0 & 10 & 3 & 0 & 7 & 4 & 13 & 12 & 8 & 18 & 16 & 10 & 19 & 12 & 21 & 12 & 19 & 4 & 1 & 24 & 8 & 6 & 1 & 24 & 0 & 22 \\ 23 & 0 & 1 & 1 & 1 & 0 & 5 & 5 & 1 & 7 & 7 & 4 & 7 & 11 & 3 & 14 & 3 & 12 & 11 & 7 & 17 & 15 & 9 & 18 & 11 & 20 & 11 & 18 & 3 & 0 & 23 & 7 & 5 & 0 & 23 & 34 & 19 \\ 24 & 0 & 0 & 0 & 0 & 4 & 2 & 0 & 0 & 6 & 6 & 3 & 6 & 10 & 2 & 13 & 2 & 11 & 10 & 6 & 16 & 14 & 8 & 17 & 10 & 19 & 10 & 17 & 2 & 28 & 20 & 2 & 28 & 14 & 18 & 25 & 2 \\ 25 & 0 & 1 & 0 & 1 & 2 & 5 & 0 & 1 & 0 & 5 & 2 & 5 & 9 & 1 & 12 & 1 & 10 & 9 & 5 & 15 & 13 & 7 & 16 & 9 & 18 & 9 & 16 & 1 & 27 & 19 & 1 & 27 & 13 & 17 & 24 & 1 \end{array}\] \caption*{$RA_{2}$: $z_{n}= 2z_{n-1}+c \mod n$, $c = 0,1,\ldots25$. Leftmost column gives $c$.} \end{center} \end{sidewaysfigure} \begin{sidewaysfigure} \begin{center} \[ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 3 & 4 & 1 & 0 & 1 & 7 & 3 & 8 & 1 & 7 & 1 & 7 & 11 & 16 & 7 & 5 & 11 & 4 & 3 & 19 & 19 & 15 & 13 & 25 & 11 & 9 & 25 & 27 & 3 & 19 & 13 & 9 & 19 \\ 2 & 0 & 0 & 2 & 2 & 4 & 2 & 0 & 2 & 5 & 2 & 3 & 8 & 11 & 12 & 14 & 6 & 4 & 8 & 12 & 14 & 2 & 14 & 17 & 8 & 0 & 2 & 14 & 2 & 14 & 26 & 3 & 20 & 23 & 4 & 26 & 14 \\ 3 & 0 & 1 & 0 & 3 & 1 & 3 & 0 & 3 & 3 & 1 & 9 & 9 & 5 & 5 & 3 & 5 & 16 & 9 & 0 & 3 & 0 & 3 & 21 & 9 & 7 & 19 & 9 & 1 & 9 & 27 & 10 & 31 & 24 & 11 & 34 & 27 \\ 4 & 0 & 0 & 1 & 2 & 1 & 4 & 0 & 4 & 1 & 0 & 4 & 4 & 2 & 2 & 1 & 10 & 13 & 10 & 7 & 6 & 19 & 8 & 6 & 16 & 0 & 4 & 1 & 10 & 6 & 10 & 2 & 16 & 1 & 10 & 29 & 34 \\ 5 & 0 & 1 & 2 & 1 & 1 & 5 & 0 & 5 & 8 & 3 & 1 & 11 & 6 & 13 & 8 & 5 & 1 & 11 & 14 & 9 & 17 & 19 & 4 & 5 & 10 & 13 & 2 & 17 & 20 & 5 & 4 & 29 & 14 & 21 & 26 & 17 \\ 6 & 0 & 0 & 0 & 2 & 3 & 0 & 6 & 2 & 0 & 6 & 9 & 0 & 6 & 0 & 6 & 10 & 15 & 6 & 4 & 10 & 3 & 2 & 18 & 18 & 14 & 12 & 24 & 10 & 8 & 24 & 26 & 2 & 18 & 12 & 8 & 18 \\ 7 & 0 & 1 & 1 & 1 & 3 & 1 & 6 & 3 & 7 & 9 & 6 & 7 & 10 & 11 & 13 & 5 & 3 & 7 & 11 & 13 & 1 & 13 & 16 & 7 & 24 & 21 & 25 & 17 & 22 & 19 & 28 & 15 & 31 & 23 & 5 & 1 \\ 8 & 0 & 0 & 2 & 0 & 3 & 2 & 6 & 4 & 5 & 8 & 1 & 2 & 7 & 8 & 11 & 10 & 0 & 8 & 18 & 16 & 20 & 18 & 1 & 14 & 17 & 6 & 17 & 26 & 19 & 2 & 20 & 0 & 8 & 22 & 0 & 8 \\ 9 & 0 & 1 & 0 & 1 & 0 & 3 & 6 & 5 & 3 & 7 & 7 & 3 & 1 & 1 & 0 & 9 & 12 & 9 & 6 & 5 & 18 & 7 & 5 & 15 & 24 & 23 & 12 & 25 & 14 & 3 & 27 & 11 & 9 & 29 & 8 & 21 \\ 10 & 0 & 0 & 1 & 0 & 0 & 4 & 6 & 6 & 1 & 6 & 2 & 10 & 5 & 12 & 7 & 4 & 0 & 10 & 13 & 8 & 16 & 18 & 3 & 4 & 9 & 12 & 1 & 16 & 19 & 4 & 3 & 28 & 13 & 20 & 25 & 16 \\ 11 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 \\ 12 & 0 & 0 & 0 & 0 & 2 & 0 & 5 & 2 & 6 & 8 & 5 & 6 & 9 & 10 & 12 & 4 & 2 & 6 & 10 & 12 & 0 & 12 & 15 & 6 & 23 & 20 & 24 & 16 & 21 & 18 & 27 & 14 & 30 & 22 & 4 & 0 \\ 13 & 0 & 1 & 1 & 3 & 1 & 1 & 5 & 3 & 4 & 7 & 0 & 1 & 6 & 7 & 10 & 9 & 16 & 1 & 0 & 13 & 7 & 11 & 10 & 1 & 19 & 23 & 16 & 25 & 18 & 1 & 19 & 31 & 1 & 19 & 22 & 1 \\ 14 & 0 & 0 & 2 & 2 & 1 & 2 & 5 & 4 & 2 & 6 & 6 & 2 & 0 & 0 & 14 & 2 & 9 & 14 & 3 & 12 & 2 & 4 & 15 & 8 & 12 & 8 & 8 & 6 & 21 & 20 & 10 & 10 & 8 & 28 & 7 & 20 \\ 15 & 0 & 1 & 0 & 3 & 3 & 3 & 5 & 5 & 0 & 5 & 1 & 9 & 4 & 11 & 6 & 3 & 16 & 3 & 14 & 19 & 3 & 11 & 12 & 15 & 5 & 19 & 21 & 1 & 21 & 21 & 17 & 21 & 9 & 1 & 21 & 33 \\ 16 & 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 \\ 17 & 0 & 1 & 2 & 1 & 3 & 5 & 5 & 7 & 5 & 7 & 4 & 5 & 8 & 9 & 11 & 3 & 1 & 5 & 9 & 11 & 20 & 5 & 1 & 23 & 5 & 21 & 8 & 9 & 13 & 5 & 16 & 17 & 20 & 1 & 23 & 11 \\ 18 & 0 & 0 & 0 & 2 & 0 & 0 & 4 & 2 & 3 & 6 & 10 & 6 & 2 & 2 & 0 & 2 & 13 & 6 & 16 & 14 & 18 & 16 & 22 & 6 & 4 & 16 & 6 & 26 & 0 & 18 & 2 & 30 & 0 & 18 & 21 & 0 \\ 19 & 0 & 1 & 1 & 1 & 0 & 1 & 4 & 3 & 1 & 5 & 5 & 1 & 12 & 7 & 1 & 9 & 5 & 13 & 2 & 11 & 1 & 3 & 14 & 7 & 11 & 7 & 7 & 5 & 20 & 19 & 9 & 9 & 7 & 27 & 6 & 19 \\ 20 & 0 & 0 & 2 & 0 & 0 & 2 & 4 & 4 & 8 & 8 & 2 & 8 & 3 & 10 & 5 & 2 & 15 & 2 & 13 & 18 & 2 & 10 & 11 & 14 & 4 & 18 & 20 & 0 & 20 & 20 & 16 & 20 & 8 & 0 & 20 & 32 \\ 21 & 0 & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 \\ 22 & 0 & 0 & 1 & 0 & 2 & 4 & 4 & 6 & 4 & 6 & 3 & 4 & 7 & 8 & 10 & 2 & 0 & 4 & 8 & 10 & 19 & 4 & 0 & 22 & 4 & 20 & 7 & 8 & 12 & 4 & 15 & 16 & 19 & 0 & 22 & 10 \\ 23 & 0 & 1 & 2 & 3 & 1 & 5 & 4 & 7 & 2 & 5 & 9 & 5 & 1 & 1 & 14 & 11 & 4 & 11 & 13 & 1 & 8 & 5 & 7 & 17 & 0 & 23 & 26 & 11 & 2 & 5 & 22 & 27 & 20 & 7 & 30 & 23 \\ 24 & 0 & 0 & 0 & 0 & 4 & 0 & 3 & 2 & 0 & 4 & 4 & 0 & 11 & 6 & 0 & 8 & 4 & 12 & 1 & 10 & 0 & 2 & 13 & 6 & 10 & 6 & 6 & 4 & 19 & 18 & 8 & 8 & 6 & 26 & 5 & 18 \\ 25 & 0 & 1 & 1 & 3 & 3 & 1 & 3 & 3 & 7 & 7 & 1 & 7 & 2 & 9 & 4 & 1 & 14 & 1 & 12 & 17 & 1 & 9 & 10 & 13 & 3 & 17 & 19 & 27 & 13 & 13 & 10 & 21 & 19 & 3 & 8 & 1 \end{array}\] \caption*{$RA_{6}$: $z_{n}= 6z_{n-1}+c \mod n$, $c = 0,1,\ldots25$. Leftmost column gives $c$.} \end{center} \end{sidewaysfigure} % \clearpage The entry in row $c$ and column $n$ of $RA_b$ will be denoted by $z_{b,c,n}$. So $z_{b,c,0}=0$ for all $b,c$. For $n\geq 1$, compute \[ z_{b,c,n}\equiv b z_{b,c,n-1} +c\pmod n, \] taking the least nonnegative residue modulo $n$, so that \[ b z_{b,c,n-1} +c = n q_n + z_{b,c,n}, \] where \[ q_n=\lfloor (b z_{b,c,n} + c)/ n\rfloor. \] The rows of $RA_b$ are rumor (running modulus recursion) sequences as described in Dearden and Metzger \cite{dm}. Rumor sequences appear to be related, at least tangentially, to a number of familiar mathematical topics. For example, as pointed out by Borwein and Loring \cite{bl}, conjectures concerning rumor sequences are reminiscent of the Collatz $3x+1$ Conjecture. In Dearden and Metzger \cite{dm}, certain rumor sequences are shown to be related to a variation of the Josephus problem as presented in Graham, Knuth, and Patashnik \cite[p.\ 8] {gkp}. Finally, Dearden, Iiams, and Metzger \cite{dim} contrast the behavior of certain functions related to rumor sequences with properties of the Takagi function. Studying extended versions of tables $RA_2$ and $RA_6$, and similar tables for other values $b$ immediately suggests a number of simple sounding conjectures. First, the columns are periodic, though the minimal period is not completely obvious, and second, within each period of column $n$, the values $0,1,2,\ldots,n-1$ appear to follow no recognizable pattern, but are nevertheless equidistibuted. Empirical evidence supports these conjectures, but complete proofs have turned out to be elusive. In this paper we prove several theorems related to these two conjectures. In particular, in the next section we show that columns of $RA_{b}$ are periodic, and in a few simple cases, we will determine the minimal period of some columns. A Mathematica {.}cdf (Computable Document Format) application, RumorArray.cdf \cite{ra}, is available for experimentation. With the free CDF Player available from Wolfram's Mathematica site at (\url{http://www.wolfram.com/cdf-player}), RumorArray.cdf can be used to quickly generate rumor arrays with parameter values $1\leq b,c,n \leq 100$. \section{Columns are periodic} For integers $k$, $1\leq k \leq n$, the value of $\lcm( k,k+1,\ldots,n)$, the least common multiple of the integers $k, k+1, \dots, ,n$, will occur frequently. The shorthand symbol ${}_kL_n$ will be used to denote that value. In this section we give the easy proof that that columns of $RA_b$ are periodic. Empirical evidence suggests that the full truth about the columns is given in the following conjecture. \begin{conjecture} \label{periodconj} The minimal period of the $n$th column in $RA_b$ is ${}_kL_n$, where $k$ is the largest divisor of $b$ not exceeding $n$. \end{conjecture} For any $b$ and large enough $n$, clearly the period ${}_kL_n$ of the periodicity conjecture will equal ${}_1L_n$, so, if the conjecture is true, then the period given in the next theorem will be the minimal period of the $n$th column for all sufficiently large $n$. It is not hard to show that for a given $k \geq 3$, the least value of $n\geq k$ such that ${}_kL_n ={}_1L_n$ is two times the largest prime power less than $k$, or, in other words, two times the values of the sequence \seqnum{A031218} of OEIS. \begin{theorem} For each integer $b\geq 2$ the $n$th column of $RA_b$ is periodic with period ${}_1L_n$. \end{theorem} \begin{proof} The column for $n=1$ is identically $0$, and so it is $1${-}periodic. Suppose the $(n-1)$st column is ${}_1L_{n-1}$ periodic. Since ${}_1L_{n-1}$ divides ${}_1L_{n}$, the $(n-1)$st column is $t ={}_1L_{n}$ periodic. So, for any integer $c\geq 0$, \[ z_{b,c+t,n}\equiv b z_{b,c+t,n-1}+(c+t) \equiv b z_{b,c,n-1} + c \equiv z_{b,c,n} \pmod{n}. \] Consequently $z_{b,c+t,n} = z_{b,c,n}$. \end{proof} Such a simple inductive proof of Conjecture \ref{periodconj} does not seem likely since the minimal periods of the columns do not always increase as we move across the array. For example, with $b = 6$, column $n=5$ has minimal period $60$ while column $6$ has period $6$. In the next two theorems, a few special cases are considered where the column entries follow a particularly simple pattern and the minimal period of the column can be easily determined. \begin{theorem} \label{divb1} If $n$ divides $b$, then the $n$th column of $RA_{b}$ has minimal period $n$. One complete period has the form $0,1,2,\ldots n-1$. \end{theorem} \begin{proof} If $n$ divides $b$, then the recursive formula reduces to $z_{b,n,c}\equiv bz_{b,c,n-1}+c \equiv c \pmod n$. As $c$ takes on the values $0,1,2,\ldots$ in order, the residues modulo $n$ repeat the pattern $0,1,2,\ldots,n-1$. \end{proof} \begin{theorem} \label{divb2} If $b = (n-1)(mn+1)$ for integers $m\geq 1$ and $n\geq 2$, then $n$th column of $RA_{b}$ has minimal period $n(n-1)$. One complete period has the form \[ 0,0,\ldots,0,n-1,n-1,\ldots,n-1,n-2,n-2,\ldots,n-2,\ldots,1,1,\ldots,1] \] where each value occurs $n-1$ times. \end{theorem} \begin{proof} Suppose $b$ has the form $(n-1)(mn+1)$ for some integers $m\geq 1$ and $n\geq 2$. Since $n-1$ divides $b$, the $(n-1)$st column of $RA_{b}$ is $0,1,2,\ldots,n-2,0,1,\ldots,n-2,\ldots$. For $0\leq c < n(n-1)$, write $c = r + q(n-1)$ with $0\leq r 0$ and $\xi^{j(n-1)} = 1$, in other words, if $n$ divides $j$, then $\displaystyle \sum_{m=0}^{n-2}\overline{\xi}^{\,jm} = \frac{\overline{\xi}^{\,j(n-1)}-1}{\overline{\xi}^{\,j} - 1} = 0$, so $a_j = 0$ in these cases. For all other values of $j$, $00$, the $n(n-1)$th column actually satisfies a linear recurrence relation with characteristic polynomial $\displaystyle \chi(x) = \frac{(x-1)(x^{n(n-1)}-1)}{x^{n-1} -1}$. \section {Acknowledgements} The authors wish to thank the referees for their thoughtful comments. \begin{thebibliography}{9} \bibitem{bl} P. B.~Borwein and T. A.~Loring, Some questions of Erd\H{o}s and Graham on numbers of the form $\sum g_{n}/2^{g_{n}}$, {\em Math. Comp.} \textbf{54} (1990), 377--394. \bibitem{dm} B.~Dearden and J.~Metzger, Running modulus recursions, {\em J. Integer Seq.} \textbf{13} (2010), \href{http://www.cs.uwaterloo.ca/journals/JIS/VOL13/Dearden/dearden3.html}{Article 10.1.6}. \bibitem{dim} B.~Dearden, J.~Iiams, and J.~Metzger, A function related to the rumor sequence conjecture, {\em J. Integer Seq.} \textbf{14} (2011), \href{http://www.cs.uwaterloo.ca/journals/JIS/VOL13/Dearden/dearden3.html}{Article 11.2.3}. \bibitem{ra} B. Dearden, J. Iiams, and J. Metzger, {\tt RumorArray.cdf}, Mathematica CDF application, 2013, available at \newline \url{https://cs.uwaterloo.ca/journals/JIS/VOL16/Dearden/RumorArray.cdf}. \bibitem{er} P.~Erd\H{o}s, Some problems and results on the irrationality of the sum of infinite series, {\em J. Math. Sci.} \textbf{10} (1975), 1--7. \bibitem{erg} P.~ Erd\H{o}s and R. L.~Graham, {\it Old and New Results in Combinatorial Number Theory}, Monograph No.\ 28, {\it L'Enseignement Math\'ematique}, 1980. \bibitem{gkp} R{.} Graham, D{.} Knuth, and O{.} Patashnik, {\it Concrete Mathematics}, 2nd edition, Addison-Wesley, 1994. \bibitem{va} E.~Vantieghem, On sequences related to expansions of real numbers, {\em Fibonacci Quart.} \textbf{34} (1996), 356--361. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2000 {\it Mathematics Subject Classification}: Primary 11B37; Secondary 11A50. \noindent \emph{Keywords: } recurrence sequence, recurrence relation modulo $m$, rumor sequence, running modulus recursion. \bigskip \hrule \bigskip \noindent (Concerned with sequences \seqnum{A031218}, \seqnum{A177356}, and \seqnum{A208125}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received March 29 2013; revised version received October 1 2013. Published in {\it Journal of Integer Sequences}, October 13 2013. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .