\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage{amstext} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf On the Middle Prime Factor of an Integer } \vskip 1cm \large Jean-Marie~De~Koninck \\ D\'epartement de Math\'ematiques \\ Universit\'e Laval \\ Qu\'ebec G1V 0A6 \\ Canada \\ \href{mailto:jmdk@mat.ulaval.ca}{\tt jmdk@mat.ulaval.ca} \\ \ \\ Florian~Luca\\ Fundaci\'on Marcos Moshinsky \\ UNAM\\ Circuito Exterior C.U. \\ Apdo. Postal 70-543 \\ Mexico D.F. 04510 \\ Mexico\\ \href{mailto:fluca@matmor.unam.mx}{\tt fluca@matmor.unam.mx} \end{center} \vskip .2 in \begin{abstract} Given an integer $n\ge 2$, let $p_m(n)$ denote the middle prime factor of $n$. We obtain an estimate for the sum of the reciprocals of $p_m(n)$ for $n\le x$. \end{abstract} \section{Introduction} Given an integer $n\ge 2$, let $P(n)$ stand for its largest prime factor, writing $P(1)=1$. The global behavior of this function is easy to evaluate. For instance, one can easily show that $$\sum_{n\le x} P(n) = \frac{\pi^2}{12} \frac{x^2}{\log x} + O \left( \frac{x^2}{\log^2 x} \right).$$ This is a well known result and a proof can be found in our recent book (\cite[Thm. 9.2]{DL}). Estimating the global behavior of the reciprocal of $P(n)$ is much harder, and it has been the focus of many papers at the end of the 1970's and early 1980's. See, for instance, the book of De Koninck and Ivi\'c \cite{DI} and the papers of Erd\H{o}s and Ivi\'c \cite{EIa,EIb}. The best estimate was finally obtained in 1986 by Erd\H{o}s, Ivi\'c and Pomerance \cite{carl}; they proved that $$\sum_{n\le x} \frac 1{P(n)} = x\delta(x) \left( 1+ O \left( \sqrt{ \frac{\log_2 x }{\log x}} \right) \right),$$ where $\delta(x)$ is some continuous function which decreases to 0 very slowly as $x\to \infty$ and satisfies $$\delta(x) = \exp\{ - \sqrt{2\log x \log_2 x} (1+o(1))\} \qquad \mbox{ as } x \to \infty.$$ Here and in what follows, for an integer $k\ge 2$, we write $\log_k x$ for the $k$-th fold iterate of $\log$ evaluated at $x$, and we shall assume that the input $x$ in such an expression is sufficiently large such that the thus defined iterated logarithm is real and positive. Interestingly the sum of the reciprocals of the second largest prime factor function $P_2(n)$ defined for those integers $n$ with at least two prime factors, has a totally different asymptotic value. In fact, the first author proved in 1993 (see De Koninck \cite{dk}) that, if $\Omega(n)$ stands for the number of prime factors of $n$ counting their multiplicity, $$ \sum_{\substack{n\le x \\ \Omega(n) \ge 2}} \frac 1{P_2(n)} = c_2 \frac x{\log x} + O \left( \frac x{\log ^2 x} \right), $$ where $\displaystyle{c_2= \sum_{m=1}^\infty \frac 1m \sum_{p\ge P(m)} \frac 1{p^2} \approx 1.254}$. In the same paper, it is shown that, if $P_k(n)$ stands for the $k$-largest prime factor of an integer, then $$\sum_{\substack{n\le x \\ \Omega(n) \ge k}} \frac 1{P_k(n)} = c_k \frac{x (\log_2 x)^{k-2}}{\log x} \left( 1+ O \left( \frac 1{\log_2 x} \right)\right),$$ where $c_k = c_2/(k-2)!$. In 1988, De Koninck and Galambos \cite{DG} estimated the sum of the reciprocals of a random prime factor of an integer. More precisely, for each integer $n\ge 2$, let $$p_1(n)10\log_2 x\};\\ {\mathcal N}_2(x) & = & \{n\le x: p_m(n)>\log x\};\\ {\mathcal N}_3(x) & = & \{n\le x: \omega(n)=1,~2\}. \end{eqnarray*} By Luca and Pomerance \cite[Lem. 13]{LuPo}, we have $$ \#{\mathcal N}_1(x)\ll \frac{x\log x\log_2 x}{2^{10\log_2 x}}\ll \frac{x}{(\log x)^5}, $$ which shows that \begin{equation} \label{eq:N1} \sum_{n\in {\mathcal N}_1(x)} \frac{1}{p_m(n)}\ll \#{\mathcal N}_1(x)\ll \frac{x}{(\log x)^5}. \end{equation} Clearly, \begin{equation} \label{eq:N2} \sum_{n\in {\mathcal N}_2(x)} \frac{1}{p_m(n)}\le \frac{\#{\mathcal N}_2(x)}{\log x}\ll \frac{x}{\log x}. \end{equation} Finally, $$ \#{\mathcal N}_3(x)\ll \frac{x\log_2 x}{\log x}, $$ so that \begin{equation} \label{eq:N3} \sum_{n\in {\mathcal N}_3(x)} \frac{1}{p_m(n)}\ll \frac{x\log_2 x}{\log x}. \end{equation} In light of these estimates for the contributions of the members $n$ from ${\mathcal N}_1(x)$, ${\mathcal N}_2(x)$ and ${\mathcal N}_3(x)$ to the sum of the reciprocals of $p_m(n)$, from now on we assume that $n\in {\mathcal N}_4(x)=\{n\le x\}\backslash \left({\mathcal N}_1(x)\cup {\mathcal N}_2(x)\cup {\mathcal N}_3(x)\right).$ Fix $p\in [2,\log x]$ and $k\in [3,10\log_2 x]$ and consider the set $$ {\mathcal N}_{p,k}(x)=\{n\in {\mathcal N}_4(x): p_m(n)=p~{\text{\rm and}}~\omega(n)=k\}. $$ Write $k=2k_0+\delta,$ where $\delta\in \{0,1\}$. If $n\in {\mathcal N}_{p,k}(x)$, then $n=ap^{\alpha}b$, where $P(a)1$, the maximum of the function $f_A(t)=(e^2A/t^2)^t$ is attained at $t_0={\sqrt{A}}$ in which case $f_A(t_0)=\exp(2{\sqrt{A}})$. We first take $B=\exp(2{\sqrt{\log_2 x\log_3 x}})$ and split the range of $p$ into values $p\le B$ and $p>B$. Let ${\mathcal N}_5(n)$ and ${\mathcal N}_6(n)$ be the subsets of ${\mathcal N}_4(x)$ for which $p(n)\le B$ and $p(n)>B$, respectively. Applying the above observation with $$ A=\log_2 x\,\log_2 B, $$ we get that \begin{eqnarray} \label{eq:N5} \sum_{n\in {\mathcal N}_5(x)} \frac{1}{p_m(n)} & \le & \sum_{\substack{p\le B\\ 3\le k<10\log_2 x}} \frac{1}{p}\# {\mathcal N}_{p,k}(x)\nonumber\\ & \ll & \sum_{\substack{p\le B\\ 1\le k_0<5\log_2 x}} \frac{x(\log_2 x)^2}{p^2\log x}\left( \frac{e^2\log_2 x\log_2 B}{k_0^2}\right)^{k_0}\nonumber\\ & \ll & \frac{x(\log_2 x)^3}{\log x} \exp(2{\sqrt{A}}) \left(\sum_{2\le p\le B} \frac{1}{p^2}\right)\nonumber\\ & \ll & \frac{x}{\log x}\exp\left((c_0+o(1)) {\sqrt{\log _2 x\log_3 x}}\right) \end{eqnarray} as $x\to\infty$. For ${\mathcal N}_6(x)$, we use the fact that $p\le \log x$, put $C=\log_2 x\log_3 x$, and use the above argument based on the maximum of the function $f_C(t)$ to get that \begin{eqnarray} \label{eq:N6} \sum_{n\in {\mathcal N}_6(x)} \frac{1}{p_m(n)} & \ll & \sum_{\substack{ BB} \frac{1}{p^2}\right)\ll \frac{x(\log_2 x)^3}{\log x}, \end{eqnarray} because $B=\exp(2{\sqrt{C}})$. Comparing estimates \eqref{eq:N1}, \eqref{eq:N2}, \eqref{eq:N3}, \eqref{eq:N5} and \eqref{eq:N6}, we get the desired estimate. \section{The proof of the lower bound} We now turn our attention to the lower bound. For this, we shall select a subset of positive integers $n\le x$ such that the sum of the reciprocals of $p_m(n)$ for $n$'s in this subset already achieves the desired lower bound. Our $n$'s will be of the form $$ n=abpP $$ such that $p\in [q_0,2q_0]$, $a$ and $b$ are square free and have $k_0$ and $k_0-1$ prime factors, respectively, with $rr,~\omega(a)=k_0\}. $$ We need to estimate the sum of reciprocals of the members of ${\mathcal A}$. For this, we set $$ S=\sum_{rr} \frac{1}{q^2}\right)=S+O\left(\frac{1}{r}\right). $$ In particular, $$ S_1^{k_0}=\left(S+O\left(\frac{1}{r}\right)\right)^{k_0}=S^{k_0}\exp\left(O\left(\frac{k_0}{rS}\right)\right)=S^{k_0}(1+o(1)). $$ Now it is easy to see that \begin{eqnarray}\label{eq:*1} \nonumber \sum_{a\in {\mathcal A}} \frac{1}{a} & \ge & \frac{1}{k_0!} S^{k_0}-\sum_{rr} \frac{1}{q^2}\right)\right)\\ & = & \frac{S^{k_0}}{k_0!} \left(1+O\left(\frac{k_0}{rS}\right)\right)= \frac{S^{k_0}}{k_0!} (1+o(1)). \end{eqnarray} Observe that if $a\in {\mathcal A}$, then $ap<(2q_0)^{k_0+1}<(\log x)^{\log_2 x}$ for all sufficiently large $x$. Now let $$ {\mathcal B}=\left\{b:\mu^2(b)=1, p(b)>2q_0, P(b)x^{1/3}>x^{1/(2k_0)} $$ for large $x$, implying that given $n=Papb$, the numbers $P,~a,~b$ are uniquely determined. Observe that the number of choices for $P$ is \begin{equation} \label{eq:pi} \pi\left(\frac{x}{abp}\right)-\pi\left(\frac{x}{2abp}\right)\gg \frac{x}{apb\log(x/apb)}\gg \frac{x}{apb\log x}. \end{equation} Thus, in light of (\ref{eq:*1}), (\ref{eq:*2}) and (\ref{eq:pi}), it follows that the number of positive integers $n\le x$ such constructed and for which $p_m(n)=p$ is \begin{eqnarray*} &\ge & \sum_{a\in {\mathcal A}}Ê\sum_{b\in {\mathcal B}} \left(\pi\left(\frac{x}{apb}\right)-\pi\left(\frac{x}{2apb}\right)\right) \\ & \gg & \frac{x}{p\log x} \left(\sum_{a\in {\mathcal A}} \frac{1}{a} \right)\left(\sum_{b\in {\mathcal B}}\frac{1}{b}\right), \end{eqnarray*} so that $$ \frac{1}{p} \sum_{\substack{n\le x\\ p_m(n)=p}}1 \gg \frac{x}{p^2\log x {\sqrt{\log\log x}}} \frac{(ST)^{k_0}}{k_0!^2}, $$ which means, in light of (\ref{eq:S*}) and (\ref{eq:T*}), that \begin{eqnarray*} \frac{1}{p} \sum_{\substack{n\le x\\ p_m(n)=p}}1 & \gg & \frac{x}{p^2 (\log x) (\log_2 x)^{3/2}}\\ & & \qquad \times \left( \frac{(e^2/2+o(1))\log_2 x \log_3 x}{(1/2+o(1))\log_2 x\log_3 x}\right)^{(c_0^{-1}+o(1)){\sqrt{\log_2 x\log_3 x}}}\\ & \gg & \frac{x\exp((c_0+o(1)){\sqrt{\log_2 x\log_3 x}})}{\log x}\times \frac{1}{p^2} \end{eqnarray*} implying that \begin{eqnarray*} \sum_{n\le x} \frac 1{p_m(n)} & \gg & \frac{x}{\log x} \exp((c_0+o(1)){\sqrt{\log_2 x\log_3 x}})\sum_{q_0